DIGITAL NOTES
ON
FORMAL LANGUAGES AND AUTOMATA
THEORY

B.TECH II YEAR - II SEM
(2017-18)

DEPARTMENT OF INFORMATION TECHNOLOGY

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
(Autonomous Institution — UGC, Govt. of India)

(Affiliated to JINTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC — ‘A’ Grade - ISO 9001:2015 Certified)
Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad — 500100, Telangana State, INDIA.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 1

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
w} DEPARTMENT OF INFORMATION TECHNOLOGY

II Year B.Tech IT — II Sem L T/PD C
4 /- 3

(R15A0506)FORMAL LANGUAGES AND AUTOMATA THEORY

Objectives:

®,

¢ To teach the student to identify different formal language classes and their
relationships

To teach the student the theoretical foundation for designing compilers.
To teach the student to use the ability of applying logical skills.

X/
X4

X/
X

R/
A X4

Teach the student to prove or disprove theorems in automata theory using its
properties

To teach the student the techniques for information processing.

Understand the theory behind engineering applications.

R/
A X4

R/
A X4

UNIT I:

Fundamentals: Strings, Alphabet, Language, Operations, Finite state machine, definitions,
finite automaton model, acceptance of strings, and languages, FA, transition diagrams and
Language recognizers.

Finite Automata: Deterministic finite automaton, Non deterministic finite automaton and
NFA with € transitions - Significance, acceptance of languages. Conversions and
Equivalence : Equivalence between NFA with and without € transitions, NFA to DFA
conversion, minimization of FSM, equivalence between two FSMs, Finite Automata with
output- Moore and Melay machines.

UNIT II:

Regular Languages: Regular sets, regular expressions, identity rules, Conversion finite
Automata for a given regular expressions, Conversion of Finite Automata to Regular
expressions. Pumping lemma of regular sets, closure properties of regular sets (proofs not
required).

UNIT III:

Grammar Formalism: Regular grammars-right linear and left linear grammars, equivalence
between regular linear grammar and FA, inter conversion, Context free grammar, derivation
trees, sentential forms. Right most and leftmost derivation of strings.

Context Free Grammars: Ambiguity in context free grammars. Minimisation of Context
Free Grammars. Chomsky normal form, Greibach normal form, Pumping Lemma for Context
Free Languages. Enumeration of properties of CFL (proofs omitted).

UNIT IV:

FORMAL LANGUAGES AND AUTOMATA THEORY Page 2

Push Down Automata: Push down automata, definition, model, acceptance of CFL,
Acceptance by final state and acceptance by empty state and its equivalence. Equivalence of
CFL and PDA, interconversion. (Proofs not required). Introduction to DCFL and DPDA.
LINEAR BOUNDED AUTOMATA(LBA):LBA,context sensitive grammars ,CS languages

UNIT V:

Turing Machine: Turing Machine, definition, model, design of TM, Computable functions,
recursively enumerable languages. Church’s hypothesis, counter machine, types of Turing
machines (proofs not required).

Computability Theory: Chomsky hierarchy of languages, linear bounded automata and
context sensitive language, LR(0) grammar, decidability of, problems, Universal Turing
Machine, undecidability of posts. Correspondence problem, Turing reducibility, Definition of
P and NP problems, NP complete and NP hard problems.

TEXT BOOKS:

1. “Introduction to Automata Theory Languages and Computation”. Hopcroft H.E. and
Ullman J. D. Pearson Education.

2. Introduction to Theory of Computation - Sipser 2nd edition Thomson

REFERENCE BOOKS:

1. Introduction to Computer Theory, Daniel I.A. Cohen, John Wiley.

2. Introduction to languages and the Theory of Computation ,John C Martin, TMH

3. “Elements of Theory of Computation”, Lewis H.P. & Papadimition C.H. Pearson /PHI.

4. Theory of Computer Science and Automata languages and computation -Mishra and
Chandrashekaran, 2nd edition, PHI.

. Theory of Computation, By K.V.N. Sunitha and N.Kalyani

91

Course Outcomes:
Student will have the ability to

*

* Apply knowledge in designing or enhancing compilers.

Rl

¢ Design grammars and automata (recognizers) for different language classes.

% Apply knowledge in developing tools for language processing or text processing.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 3

MALIA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

?’f%% DEPARTMENT OF INFORMATION TECHNOLOGY
i 2
INDEX
S. No Unit Topic Page no
1 Strings, Alphabet, Language, Operations 6-9
2 Finite state machine, 10-15
3 . Finite Automata: DFA,NFA,With € transitions 16-21
4 Conversions and Equivalence : 22-27
5 NFA to DFA conversion, minimization of FSM, 28-32
equivalence between two FSMs
6 Finite Automata with output 46-52
7 11 Regular Languages: Conversion, Pumping lemma of 53.58
regular sets
8 Pumping lemma of regular sets 59-64
9 FA:RLG,LLG, Sentential forms 65-72
10 Context Free Grammars:CNF,GNF 73-93
I
11 Pumping Lemma for Context Free Languages. 94-107
Enumeration of properties of CFL
12 Equivalence of CFL and PDA, inter conversion Push 108-112
v Down Automata, LBA,CSL
Turing Machine: Church’s hypothesis, counter
13 ; . . 113-115
machine, types of Turing machines
\%
14 LR(0) grammar, decidability of, problems,UTM,P 116-122
and NP Problems

FORMAL LANGUAGES AND AUTOMATA THEORY

Page 4

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
DEPARTMENT OF INFORMATION TECHNOLOGY

[ouNTa |

FORMAL LANGUAGES AND AUTOMATA THEORY Page 5

After going through this chapter, you should be able to unaerstana ;

s Alphabets, Strings and Languages
o Mathematical Induction

o Finite Automata

o Equivalence of NFAand DFA

o NFAwith ¢ - moves

11 ALPHABETS, STRINGS & LANGUAGES
Alphabet
Analphabet, denoted by 3 , is afinite and nonempty st of symbols.

Example:
. If y is an alphabet containing all the 26 characters used in English language, then

y is finite and nonempty set,and £ = {a,b,c,...., 2}
2. X ={0,} isanalphabet.
3, ¥ ={1,23,.} isnotanalphabetbecauseitisinfinite.
4, 7 ={} isnotanalphabet because it is empty.

String
A string is a finite sequence of symbols from some alphabef.
Example :

"xyz " isastring over an alphabet T = {a,b,¢, ..., 2} . Theempty stringor null string is
denoted by .

FORMAL LANGUAGES AND AUTOMATA THEORY Page 6

Length of a string

The length of a string i the number of symbols in that string. If w is a string then its length
isdenoted by | w]|.

Example :

I w=abed , then length of w is | w|= 4
2. n=o010 isastring then|n|= 3
3. e isthe empty string and has length zero.

The set of strings of length K (K > 1)

Let 3 beanalphabetand £ = {a, b}, thenall strings oflength K (K > 1) isdenoted by 7K,
£X <{w:wisastring of length K, K > 1}

Example:
l. Z={ab}, then
£ ={a,b},

* = {aa,ab, ba,bb},
%' = {aaa,aab,aba,abb baa, bab,bba,bbb}
|Z'|= 2 = 2" (Number of strings of length one),
| 2| = 4 = 2% (Number of strings of length two), and
|2%|= 8 = 2 (Number of strings of length three)
2. §={0,1,2} ,then §? ={00,01,02,11, 10,12,22,20,21} ,and | §?|= 9 = 3?

Concatenation of strings

If w, and w, are two strings then concatenation of w, with w, is a string and it is denoted by
w,w, . In other words, we can say that w, is followed by w, and | wyw,| = | w,| + | w,|.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 7

Prefix of a string

A string obtained by removing zero or more trailing symbols is called prefix. For example, ifa
String v = abe ,then a,ab,abc are prefixes of w.

Suffix of a string

A string obtained by removing zero or more leading symbols is called suffix. For example, if a
String w = abe ,then ¢,bc,abe are suffixesof y.

Astring 4 isaproper prefix or suffix of a string w ifand onlyif a = w.

Substrings of a string

A string obtained by removing a prefix and a suffix from string y is called substring of w . For
example, if astring v = gh¢ ythen p isasubstring of . Every prefix and suffix of string y is

asubstring of , but not every substring of w is a prefix or suffix of w . For every string , both
w and ¢ are prefixes, suffixes, and substrings of w.

Substring of w =w - (one prefix)-(one suffix).
Language

A Language L over g, is a subset of s, i. e, it is a collection of strings over the
alphabet 3. ¢ ,and {e} are languages. The language ¢ is undefined as similar to infinity and
{¢} is similar to an empty box i.e. a language without any string.

Example:

1. L, ={01,0011,000111 } isalanguage over alphabet {0,1}
2. L, ={€,0,00,000 ,..} isalanguageoveralphabet {0}

3. L, ={0""2" ;n > 1} isalanguage.
Kleene Closure of a Language

Let 7 bealanguage over some alphabet 5. Then Kleene closure of 1, isdenoted by 7, * and
itis also known as reflexive transitive closure, and defined as follows :

FORMAL LANGUAGES AND AUTOMATA THEORY

Page 8

L* = {Set of all words over L}
= {word of length zero, words of length one, words of length two,}

-Ue =100l uLu...

K=0
Example:

l. Z={a,b} andalanguage ; over y.Then
F=rulvulu..
L'={g
L' = {a,b},

I? = {aa,ab,ba,bb} and so on.
So, L*={e,a,b,aa,ab,ba,bb..}
2. §={0}, then §* = {€,0,00,000 ,0000 ,00000 ,....}

Positive Closure

If 3 isanalphabet then positive closure of 5. is denoted by 5+ and defined as follows:
£t = 1" - {g = {Set of all words over T excluding emply string &}
Example :
if £ = {0} ,then £* ={0,00,000,0000 ,00000 ...}

1.2 MATHEMATICAL INDUCTION

Based on general observations specific truths can be identified by reasoning, This principle is
called mathematical induction. The proof by mathematical induction involves four steps.

Basis : Thisisthestarting point for aninduction. Here, prove that the resultis true forsomen=0or 1.
Induction Hypothesis : Here, assume that the result is true forn =k..
Induction step : Prove that the result is true for somen=k+1.

Proof of induction step : Actual proof.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 9

1.3 FINITE AUTOMATA (FA)

A finite automata consists of a finite memory called input tape, a finite - nonempty set of states, an
input alphabet, a read - only head , a transition function which defines the change of configuration,
an initial state, and a finite - non empty set of final states.

A model of finite automata is shown in figure 1.1,

¥ § |+— Input Tape

f*— Reading Head

Finite Control

FIGURE 1.1 : Model of Finite Automata

The input tape is divided into cells and each cell contains one symbol from the input alphabet.
The symbol 'y is used at the leftmost cell and the symbol '$'is used at the rightmost cell to

indicate the beginning and end of the input tape. The head reads one symbol on the input tape
and finite control controls the next configuration. The head can read either from left - to- right or
right - to -left one cell at a time. The head can't write and can't move backward. So, FA can'
remember its previous read symbols. This is the major limitation of FA.

Deterministic Finite Automata (DFA)

A deterministic finite automata M can be described by 5-tuple (Q, Z, 3, g, F) , where

1. Qis finite, nonempty set of states,

2. y isaninputalphabet,

3. & istransition function whichmaps Q x£ — Q i.¢. the head reads asymbol in ts present
state and moves into next state.

4. q, €Q,knownasinitial state

5. FcQ,knownassetoffinal states.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 10

Non - deterministic Finite Automata (NFA)

A non - deterministic finite automata M can be described by 5 - tuple (Q, £, 8, q,, F),where

I Qisfinite, nonempty set of states,

2. ¥ isaninputalphabet,

3. § istransition function whichmaps Q x - 2° i.e., the head readsa symbol inits present
state and moves into the set of next state (s) . 22 is power set of Q,

4. q, €Q,knownasinitial state, and

5. FcQ,known as set of final states.

The difference between a DFA and a NFA is only in transition function. In DFA, transition
function maps on at most one state and in NFA transition function maps on at least one state for
avalid input symbol.

States of the FA

FA has following states :

1. Initial state : Initial state is an unique state ; from this state the processing starts.

2. Final states : These are special states in which if execution of input string is ended then
execution is known as successful otherwise unsuccessful.

3. Non-final states : All states except final states are known as non - final states.

4, Hang-states : These are the states, which are not included into Q, and after reaching these
states FA sits in idle situation. These have no outgoing edge. These states are generally

denoted by ¢ . For example, consider a FA shown in figurel.2.

FIGURE 1.2: Finite Automata

g, istheinitial state, q,, g, are final states, and ¢ isthe hang state.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 11

Notations used for representing FA

We represent a FA by describing all the five - terms (Q, Z, 8, g, F). By using diagram to

represent FA make things much clearer and readable. We use following notations for representing
the FA:

I. Theinitial state is represented by a state within a circle and an arrow entering into circle as

shown below :
(Inital state 4,)

2, Final state is represented by final state within double circles :
(Final state g,)

3. Thehang state is represented by the symbol '¢' within a circle as follows :

4. Other states are represented by the state name within a circle.
5. Adirected edge with label shows the transition (or move). Suppose p is the present state
and q is the next state on input - symbol ‘a', then this is represented by

6. A directed edge with more than one label shows the transitions (or moves). Suppose pis the
present state and q is the next state oninput - symbols 'a,' or 'a,' or...or 'a," thenthisis

represented by 9 Byl 0

Transition Functions
We have two types of transition functions depending on the number of arguments.

Transition Function

Difrect /\ Indirect

(Represented by §) (Represented by §')

Direct transition Function (5)

When the input is a symbol, transition function is known as direct transition function.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 12

Example : §(p,a) = q (Where pis present state and q is the next state).
Itis also known as one step transition.

Indirect transition function (5')
When the input is a string, then transition function is known as indirect transition function,
Example : 6'(p,w) =g, where p is the present state and q is the next state after | w |

transitions. It is also known as one step or more than one step transition.
Properties of Transition Functions

1. Ifé(p,a)=q,then s (p, ax)=35(q x) andif &' (p, x) = q,then &' (p, xa) =8'(q, a)
2. Fortwostringsxandy; d(p,xy) =6(8(p,x),y),and 8'(p,xy) =6'(6'(p,x),»)
Example :1. ADFA M =({9,,9:,92.9,),{0,1},8,9,.(9,}) isshownin figurel.3.

FIGURE 1.3 : Deterministic finite automata

Where § is defined as follows :
0 1
> G 0 9,
q, 9 g
9, ' G
q, q, G

2. ANFAM | =({q4.9:,92.9 1}, {0,1},8,9,.{q ;}) isshownin figure] 4.

0,1

o

FIGURE 1.4 : Non - deterministic finite automata

FORMAL LANGUAGES AND AUTOMATA THEORY Page 13

3. Transition sequence for the string "011011" is as follows :

One execution ends in hang state ¢ , second ends in non - final state g, , and third ends in final

state ¢, hence string "011011" is accepted by third execution.

Difference between DFA and NFA

Strictly speaking the difference between DFA and NFA lies only in the definition of § . Using this
difference some more points can be derived and can be written as shown :

DFA

NFA

1. The DFAis 5 - tuple or quintuple
M =(Q,%,8,q9,,F) where
Q s setof finite states
5. is set of input alphabets
8:0xZto Q
g, istheinitial state
Fc O issetof final states

The NFA is same as DFA except in the
definition of §.Here, § is defined as follows:

§:0x(2Ue) tosubset of ¢

2. There can be zero or one transition
from a state on an input symbol

There can be zero, one or more transitions
from a state on an input symbol

3, No e- transitions existi.e., there
should not be any transition ora
transition if exist it should be on an

input symbol

¢ transitions can exist i. e., without any input
there can be transition from one state to
another state.

4. Difficult to construct

Easy to construct

FORMAL LANGUAGES AND AUTOMATA THEORY

Page 14

The NFA accepts strings a, ab, abbb etc. by using ¢ path between ¢, and ¢, we can move
from g, stateto g, without reading any input symbol. To accept ab first we are moving from g,

to g, reading a and we canjumpto g, state without reading any symbol there we accept b and
we are ending with final state so it is accepted.

Equivalence of NFAwith < - Transitions and NFA without ¢ Transitions

Theorem :Ifthe language L is accepted by an NFAwith - transitions, then the language L,
is accepted by an NFAwithout e transitions.

Proof : Consider an NFA N'with ¢ - transitions where N =(Q, Z, 8, ¢,, F)
Constructan NFA N, without ¢ transitions N, =(Q,, £, 3, ¢,, F)
where (=0 and

po) FY {q,} if €~ closure(q,) contains a stateof F
CAF otherwise

and 8, (g,a) is 8 (g,a) forqinQandain 3.

Consider anon - empty string o . To show by induction | o | that §,(g,, 0) = 5 (45,0)
For @ =¢, the above statement is not true, Because
0,(90:€)={q0} »
while 8(qq.€)=€ ~closure (q,)

Basis :
Start induction with string length one .
i.e., lo|=1

Then wis asymbol a, and &, (g, ,a)=6‘(q0 ,a) by definitionof §,.

Induction : lo|>1
Let o = xy forsymbolain 3.

Then 0,(q9,xy)=0,(0,(405%),)

FORMAL LANGUAGES AND AUTOMATA THEORY Page 15

Calculation of -closure :

€-closure of state (e-closure (q)) defined as it is a set of all vertices p such that there is a
path fromqtop labelled ¢ (including itself).

Example :
Consider the NFA with e - moves

e~ closure (¢,) = {4,,4,, 9, 4, }
e~ closure (¢,)={ g,,9,, 4, }

e - closure (¢,)= {4,, ¢, }

e~ closure (¢,) = {¢, }

Procedure to convert NFA with - moves to NFA without - moves

Let N =(Q, £,8,4,, F)isaNFAwith « movesthenthereexists N'=(0,e,8,q,, ") without
e moves

1. Firstfind e - closure of all states in the design.

2. Caleulate extended transition function using following conversion formulae.
0 §(g, x)=e- closure §(3 (g, e), x)
M &(q,e)=e - closure(q)

3. Fisasetofall states whose ¢ closure contains a final state in F.

Example 1 : Convert following NFAwith & moves to NFAwithout & moves.

Solution : Transition table for given NFAis

§ a b
>4, 4,
q: @ ¢ QQ.

¢ % ¢

FORMAL LANGUAGES AND AUTOMATA THEORY

Page 16

() Finding < closure :
e~ closure (g,) = {go}
- closure (¢,) = {q,, 4.}
e closure (g,) = {¢,}

(i) Extended Transition function :
5 a b

—> 4, {4),9:} ¢

] {g,}
¢ {q:}

5 (g,,a) =€ ~closure (3 (8(g,.€),a))

= e—closure (& (e—closure (q,) , a))
= e—closure (8 (gq,, a))

= e—closure (g,)

={4:,9,}

8 (o» b) = ~closure (6(8(q0,€),b))
=e— closure(8(e- closure (q,), b))
=€~ closure(d (q,, b))
=e - closure($)

=6

8 (g,-a) =€~ cIasure{B(é (g,,€) a))
=e~— closure(d (€~ closure(q,), a))
=€~ closure(d ((4,,9,), @)
=e— closure(d (q,, a) Vo(q,, a))

=e— closure ()

=4

FORMAL LANGUAGES AND AUTOMATA THEORY

Page 17

3 (q,, b) = - closure (5 (5 (g,, ©), b))
= €— closure (8 (€— closure(q,), b))
= €~ closure (8 ((¢q,,q,), b))
= e~ closure (8 (q,,b) U & (q,, b))
= €= closure (q,)

={4q,}

8 (g,, a) = e~ closure (8(3(g,, €), a))
= €— closure (3(€—closure(q,), a))
=€ —closure (6(q,,a))
= &— closure (9)
=0

5 (g, b) = e~ closure (8 (8 (g, ©), b))
= €~ closure (8 (e-closure (q,), b))
= €~ closure (& (q,, b))

= e~ closure (g,)

={q,}

(iii) Final states are ¢, g,, because
e— closure (g,) contains final state
€ - closure (g,) contains final state

(iv) NFAwithout € movesis

FORMAL LANGUAGES AND AUTOMATA THEORY Page 18

2.1 FINITE STATE MACHINES (FSMs)

A finite state machine is similar to fnite automata having addiional capability of output,

A model of finite state machine is shown in below figure

Pinite control
Input reading Quput
head roducing head
y $| (v E
' |
)
Input tape Output tape

FIGURE : Model of FSM

2.1.1 Description of FSM

A finite state machine is represented by 6 - tuple (0,3,4,5 Ayq,) Where
. Qisfinite and non - empty set of states,

2. ¥ isinput alphabet,
3. A isoutputalphabet,

FORMAL LANGUAGES AND AUTOMATA THEORY Page 19

4. § istransition function which maps present state and input symbol on to the next state or

OxEL-Q0,
5. 4 isthe output function, and

6. ¢,eQ,istheinitial state.

2.1.2 Representation of FSM

We represent a finite state machine in two ways ; one is by transition table, and another isby
transition diagram . In transition diagram , edges are labeled with Input/ output.

Suppose , in transition table the entry is defined by a function F, so for input ¢, and state g,
F(g,, a) = (8(g,, a), Mag;,a)) (where § is tramsition function, 3, is output function.)

Example 1 : Consider a finite state machine, which changes 1's into 0's and O'sinto 1's
{ 1's complement) as shown in below figure .

Transition diagram :

(=18
—

FIGURE : Finite state machine

Transition table :

Inputs
0 I
Present Next State (NS) | Output Next State (NS) Output
State(PS)
q q q 0

FORMAL LANGUAGES AND AUTOMATA THEORY

Page 20

Example 2 : Consider the finite state machine shown in below figure, which outputs the 2's
complement of input binary number reading from least significant bit (LSB).

CORNNN C)
@ 11
T

FIGURE : Finite State machine

Suppose, input is 10100. What is the output ?
Solution : The finite state machine reads the input from right side (LSB).

Transition sequence for input 10100 :

Inputs
CE R CE OSSO N &G
Outputs
So, the output is 01100.

2.2 MOORE MACHINE

If the output of finite state machine is dependent on present state only, then t}ns model of
finite state machine is known as Moore machine,

A Moore machine is represented by 6-tuple (0, £,A,4, 4,4,), where
@ is finite and non-empty set of states,
y, is input alphabet,
A isoutput alphabet,
& 1s transition function which maps present state and input symbol on to the next state or
OxL->0,
2 is the output function whichmaps 9 - A, (Present state —» Output), and
4, € 0 ,is the initial state .

B

(= N

If Z (1), q () are output and present state respectively at time 7 then
Z(t) = (g ().
Forinput ¢ (null string), Z (t) = A (initial state)

FORMAL LANGUAGES AND AUTOMATA THEORY Page 21

Consider three LSBs of Input
000 (X)
001 (X)
010 (X)
011 (X)
100 (X)

101
10
LT (XY)

G 110/3@
| &)

2
H

O Wwhah O a0

Transition diagram :

0

x/c

FIGURE : Moore Machine

24 EQUIVALENCE OF MOORE AND MEALY MACHINES

We can construct equivalent Mealy machine for a Moore machine and vice-versa. Let M, and
M, be equivalent Moore and Mealy machines respectively. The two outputs 7, (w) and 7, (w)
are produced by the machines M, and M, respectively for input string w . Then the length of

1, (w) is one greater than the length of 7,(w), 1e.

OIS IGIES

The additional length is due to the output produiced by initial state of Moore machine. Let output
symbol x is the additional output produced by the initial state of Moore machine, then -
Ty(w)=xTy(w) . '

FORMAL LANGUAGES AND AUTOMATA THEORY Page 22

It means that if we neglect the one initial output produced by the initial state of Moore machine,
then outputs produced by both machines are equivalent. The additional output is produced by
the initial state of (for input ¢) Moore machine without reading the input. |

Conversion of Moore Machine to Mealy Machine
Theorem : If M, =(Q.2,A,8,2,9,) isaMoore machine then there exists a Mealy machine
M, equivalentto M,. .
Proof : We will discuss proof in two steps.
Step 1 : Construction of equivalent Mealy machine M, , and
Step 2 : Outputs produced by both machines are equivalent.
Step 1(Construction of equivalent Mealy machine M,)
Let M, =(Q,%,A,8,4,q,) whereall terms 0,3, A, 8, g, are same as for Moore machine and
)’ is defined as following :
A (g,a) = A(B(g,a) forallg eQand 4 ¢ ¥

The first output produced by initial state of Moore machine is neglected and transition
sequences remain unchanged.
Step 2 : If x is the output symbol produced by initial state of Moore machine M, and
T;(w), T, (w) are outputs produced by Moore machine A, and equivalent Mealy machine 3,
respectively for input string w, then

Ti(w)=xT,(w)
Or Output of Moore machine = x| | Output of Mealy machine
(The notation | | represents concatenation).

If we delete the output symbol x from 7, (w) and supposeitis 7' (w) whichisequivalentto

the output of Mealy machine. So we have,
T () = T(w)
Hence, Moore machine 4, and Mealy machine M, are equivalent.

Example 1: Constructa Mealy machine equivalent to Moore machine A, givenin following
fransition table.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 23

3. A remainsunchanged,
4. 3 isdefined as follows :

8" ({g,bl,a) = [8(g,a), A (g,a)], where § and), are fransition function and output
function of Mealy machine.

5.) isthe output function of equivalent Moore machine which is dependent on present state
only and defined as follows :

A ([g.0) = b

6. g, istheinitial state and defined as [g,,5,], where ¢, is the initial state of Mealy machine and

b, is any arbitrary symbol selected from output alphabet A .
Step 2 : Outputs of Mealy and Moore Machines
Suppose, Mealy machine M, enters states g, ¢;, ¢5,...9, oninput q,, a,, a,,....a, and
produces outputs b, b,, b, ... b,, then M, entersthe states [g,, 4,1, (g1, 51, [925 55). - -+ [9,5 5]
and procuces outputs &), 5, b,, ... b, asdiscussed in Step 1. Hence, outputs produced by both
machines are equivalent.

Therefore, Mealy machine A4, and Moore machine A, are equivalent.

Example 1 : Consider the Mealy machine shown in below figure. Construct an equivalent
Moore machine. :

FIGURE : Mealy Machine
Solution : Let M,=(02A8,4,4,) is a given Mealy machine and
M,=(0"%,A8"4"q,") betheequivalent Moore machine,
where

L Q' c{96:nL.[90- ¥} 191,71, L41, Y], (92,70 [95. ¥]} (Since, O € O x A)
2. T=1{01

FORMAL LANGUAGES AND AUTOMATA THEORY Page 24

3. A= {my}
4. g,'=[gy,y], Where g, is theinitial state and y isthe output symbol of Mealy machine,
5. ¢ isdefinedas following : :

For initial state{g,, y] :
8'(140,¥1,0) = [6(20,0),4(g0,0)] = [91,7]
6'([g0, ¥ 1) =[6(g0.0A(g0:01 =42, 7]
For state [g,,n] :
8 ([g;,), 0) = 5 (g, 0), A (g1, 0] = [g1,)]
8'([g1,n)1) = [8(q11Ma11I=lq2.m]
For state [g,,#]
8 ([, 71, 0) = [8(95, 0) 2 (g5, O)] = [, 7]
8 ({2511 D) =[8(g2: 1) A (g2. D) = [92,]
For state [g;, y] :
8 ([, ¥ 0) = [8 (g1, 0.1 (91, O] = 141,71
8 (1, 1. D = 18 (g, 1A (9, DI = L4257
For state {g,, ¥] :
8' (142,51, 0) = [® (92, 0), % (¢2,9)] = {g,, 7]
8" ([g35 71, 1) = [8 (g2 D A (425 D] = [42, V]

(Note : We have considered only those states, which are reachable from initial state)

6. 3 isdefined asfollows:
Algoy1=y
AMlg.nl=n
Nlgnl = n
Mlgyl=v
Mgyl =Y

FORMAL LANGUAGES AND AUTOMATA THEORY Page 25

2.5 EQUIVALENCE OF FSMs

Two finite machines are said to be equivalent if and only if every input sequence yields identical
output sequence.

Example :
Consider the FSM M, shown in figure (2) and FSM M, shown in figure (b).

w o QA

Figure (b)

Are these two FSMs equivalent ?
Solution :

We check this. Consider the input strings and corresponding outputs as given following :

input string Output by ¥, Output by A,
(1) 01 00 00

{2) 010 001 001
(3)0101 0011 0011
(4) 1000 - 0111 0111
(5) 10001 01111 01111

Now, we come to this conclusion that for each input sequence, outputs produced by both machines
are identical. So, these machines are equivalent. In other words, both machines do the same

task. But, A, hastwo statesand M, has four states. So, some states of M, are doing the same

FORMAL LANGUAGES AND AUTOMATA THEORY Page 26

task . e., producing identical outputs on certain input, Such states are known as equivalent states
and require extra resources when implemented.
Thus, our goal is to find the simplest and equivalent FSM with minimum number of states.

2.51 FSM Minimization

We minimize a FSM using the following method, which finds the equivalent states, and merges
these into one state and finally construct the equivalent FSM by minimizing the number of states.

Method : Initially we assume that all pairs (g,,q,) over states are non - equivalent states
Step 1 : Construct the transition table.

Step 2 : Repeat for each pair of non - equivalent states (go,;) *
(@ Do g, and g, produce same output ?
(0) Do g, and g, reachthe same states foreachinput ¢ €27
(¢) If answers of (a) and (b) are YES, then g, and g,are equivalent states and
merge these two states into one state [g,,¢,] and replace the all occurrences of
g, and g, by [g,,q,] and mark these equivalent states.

Step 3 : Check the all - present states, if any redundancy is found, remove that,
Step 4 : Exit.

Example 1 : Consider the following transition table for FSM. Construct minimum state FSM.

Inputs
: 0 1

Present Next State Next State

State(PS) (NS) (NS) Output
qo qo ‘11 0)
q, q, ‘N 1
q, g, 9, 1
g q, 4y 1

FORMAL LANGUAGES AND AUTOMATA THEORY Page 27

After going through this chapter, you should be able to understand :

Regular sets and Reqular Expressions
Identity Rules Unit-1I
Constructing FAfor a given REs
Conversion of FAto REs

Pumping Lemma of Regular sets

Closure properties of Regular sets

3.1 REGULAR SETS

A spectal class of sets of words over S, called regular sets, is defined recursively as follows.
(Klegne proves that any set recognized by an FSM is regular. Conversely, every regular set can
berecognized by some FSM.)

. Every finite set of words over § (including ¢, the empty set)is aregular set.

2. If Aand B are regular sets over §, then 4, p and AB are also regular.

3. IfSisaregularsetover S, then soisits closure S¥,

4. Nosctisregularunless itis obtained bya finite number of applications of definitions (1) to 3).

1.6, the class of regular sets over S is the smallest class containing all finite sets of words over §
and closed under union, concatenation and star operation,

Examples:

) Let £={a,b}then the st of strings that contain both odd number of a's and b's is a
regular set.

i) Let £ ={0,1} then the set of strings {01,10 } isaregular set.

FORMAL LANGUAGES AND AUTOMATA THEORY

3.2 REGULAR EXPRESSIONS

The languages accepted by FA are regular languages and these languages are easily described
by simple expressions called regular expressions. We have some algebraic notations to represent

the regular expressions.

Regular expressions are means to represent certain sets of strings in some algebraic
manner and regular expressions describe the language accepted by FA.

If 5 isanalphabet then regular expression(s) over this can be described by following rules.
Any symbol from Z.& and ¢ are regular expressions.

If » and r, are two regular expressions then union of these represented as , U r, or

n + r, isalsoaregular expression

If r, and r, are two regular expressions then concatenation of these represented as rr, is

also aregular expression.
The Kleene closure of a regular expression » is denoted by » * isalso a regular expression.

If r is aregular expression then (r) isalso a regular expression.

The regular expressions obtained by applying rules 1 to 5 once or more than once are also
regular expressions.

Examples :

(1) If £ = {a,b},then

(a) aisaregularexpression (Usingrule 1)

(b) bisaregularexpression (Usingrule 1)

(¢) 4 + b isaregular expression (Using rule 2)

(d) »* isaregularexpression (Using rule 4)

(€) ab isaregular expression (Usingrule 3)

(® ab + b+ isaregular expression (Using rule 6)

(2) Find regular expression for the following

(a) A language consists of all the words over {a, b} endingin p .

(b) A language consists of all the words over {a, b} endingin pp.

(c) A language consists of all the words over {a, b} starting with aand endingin b.
(d) A language consists ofall the words over {a, b} having pp asasubstring.

(€) A language consists ofall the words over {a, b} ending in aab.

Solution :let £={a,b},and

All the wordsover £ = {e a, b, aa, bb, ab, ba, aaa, }=ZZ *or(a+b)*or(awb)*

FORMAL LANGUAGES AND AUTOMATA THEORY

=({g a,b,aa,bb,...})*

= {e a,b, aa, bb, ab, ba, aaa, bbb, abb, baa, aabb, ...}
= {All the words over {a, b} }

= (a + b) *

So, (a * +6*)* = (a + b) *
3.3 IDENTITIES FOR REs

The two regular expressions P and Q are equivalent (denoted as P = Q) if and only if P
represents the same set of strings as Q does, For showing this equivalence of regular expressions
we need to show some identities of regular expressions.

Let P, Q and R are regular expressions then the identity rules are as given below
L. eR=Re=R

e'=¢ e isnull string

(#) =¢ ¢ isempty string.

OR=Rp=

o+=R=R

R+R=R

RR*=R*R=R'

(R)y =R

c+RR' =R’

(P+0)R=PR+0R

(P+Q) =(P'Q)=(P'+Q)

R'(e+R)=(e +R)R" = R’

2,
)
4.
3.
6.
1
8.
9.

sk e (e

(R+e) =R’

._.
=

etk =R
(PQ) P=P(QPY
RR+R=RR

[w—y
N W

3.3.1 Equivalence of two REs

Let us see one important theorem named Arden's Theorem which helps in checking the
equivalence of two regular expressions.

FORMAL LANGUAGES AND AUTOMATA THEORY

Arden's Theorem : Let P and Q be the two regular expressions over the input set 5. . The
regular expression R is given as

R=Q+RP
Which has aunique solutionas R = QP"

Proof : Let, P and Q are two regular expressions over the input string ¥, .
IfP does not contain ¢ then there exists R such that
R=Q+RP kL)
We will replace R by QP* in equation 1.
Consider R. H. S. of equation 1.
=0+QP'P
=0(c +P'P)
=QP e+ R'R=R’
Thus R=QF
is proved, To prove that R = QP"is a unique solution, we will now replace L.H.S. of equation 1
by Q + RP. Then it becomes
Q+RP
But again R can be replaced by Q +RP.
Q+RP=Q+(Q+RP)P
=(0+0P+ RP*
Again replace R by Q + RP.
=Q+0P+(Q+RP)P
=0+0P+0QP +RP’
Thusif we go on replacing R by Q + RP then we get,
Q+RP=0Q+QP+QP +....+0P' + RP"
=Q(e+P+P*+...P')+ RP"
From equation 1,
R=Q(e+P + P* +... + P') 4 RP™
Where i>0
Consider equation 2,

R=0(c+P+P*+. ..+ P)+ RP"
»

: R=QP' +RP*
Let wbe a string of length .

FORMAL LANGUAGES AND AUTOMATA THEORY

=£e,0,00,L,11,111,01,10,000.}
= { e, any combination of 0's, any combination of I's, any combination of
Oand 1}
Hence, L.H.S.=R.H.S.is proved.

3.4 RELATIONSHIP BETWEEN FA AND RE

There isaclose relationship between a finite automata and the regular expression we can show
this relation in below figure.

Canbe Regular Canbe
Converted expression converted to

NFA with
= moves

Can be Can be
converted converted to
NFA without
& Moves

FIGURE : Relationship between FAand regular expression
The above figure shows that it is convenient to convert the regular expression to NFAwith ¢
moves. Let us see the theorem based on this conversion.

3.5 CONSTRUCTING FA FOR A GIVEN REs
Theoram :If » bearegular expression then there exists a NFAWith e -moves, which accepts L(r).
Proof: First we will discuss the construction of NFA. f with & -moves for regular expression
r and then we prove that L(M) = L(r).

Let » be the regular expression over the alphabet 5.

Construction of NFA with ¢ - moves
Case 1:

M r=0

FORMAL LANGUAGES AND AUTOMATA THEORY

NFA M = ({s, £}, { }8, 5 {fD) asshownmrngurcl ()
(No path from initial state s to
reach the final state £7)
Figure 1 (a)

@ r=¢

NFA M = ({s},{ }, 8, s, {s}) asshowninFigure 1 (b)

. (The initial state s is the final state)

Figure 1 (b)
(i) » = a,foralla €2,
NFA M = ({s, f}, 2,8, 5, {f})
C a @ (One pathis there from initial state s
to reach the final state fwith label a.)
Figure 1 (c)
Case2: |r|=z1

Let » and r, be the two regular expressions over £,, £, and N, and N, are two NFA for
r, and r, respectively as shown in Figure 2 (a).

O # @

Figure 2 (a) NFAfor regular expression » and r,

FORMAL LANGUAGES AND AUTOMATA THEORY

Now let us compute for final state, which denotes the regular expression.
r2 will be computed, because there are total 2 states and final state is ¢, whose start state is g, .
ri= s oo P o))
=0(e)*)+0
=0+0
r! = 0 whichisa final regular expression.

3.6.1 Arden's Method for Converting DFA to RE

As we have seen the Arden's theorem is useful for checking the equivalence of two regular
expressions, we will also see its use in conversion of DFA to RE.

Following algorithm is used to build the . €. from given DFA.

. Let g, betheinitial state.

. Thereareq,, g,.qs»qu--q, number of states.The final state may be some ¢, where j<n

. Let o, represents the transition from ¢, f0 g,.
. Calculate g, such that
g,=a,q,
If g, is a start state
q, = aj,. 'qj +e

5. Similarly compute the final state which ultimately gives the regular expression .

Example 1 : Construct RE for the given DFA.

Solution :

Since there is only one state in the finite automata let us solve for g, only.
90 =900+ qol+ €
qo=q,(0+1)+¢e

FORMAL LANGUAGES AND AUTOMATA THEORY

Example 3 : Construct RE for the DFA given in below figure.

Solution : Letus see the equations
qo=q1+q,0+€
q; =qo0
42 =]
g3 =q,0+q;1+4;(0+1)

Letus solve g, first,
Go = q,1 4+ q,0+€
qo = 4,01+ qy10+€
Go = qo(01+10)+ € *R=Q+RP
go =€ (01+10)* = QP * where
go =(01+10)* R=q,,0=¢€,P=(01+10)

Thus the regular expression will be
r=(01+10)*

Since g, is a final state, we are interested in g, only.

Example 4 : Find out the regular expression from given DFA.

FORMAL LANGUAGES AND AUTOMATA THEORY

Example 8 : Show that the language L = {a' b"|i>0} is not regular.

Solution : The set of strings accepted by language L is,
L = {abb, aabbbb, aaabbbbbb, aaaabbbbbbbb...}

Applying Pumping lemma for any of the strings above.

Take the string abb.

It is of the form uvw.

Where, |wv |<i|v]2]
To find i such that w'we L
Take i =2 here, then
w''w = a(bb)b
=abbb
Hence uv’w=abbb ¢ L

Since abbb is not present in the strings of L.
- Lisnot regular.

Example 9 : Show that L = {0°|n is a perfect square } is not regular.

Solution :
Step 1 : Let Lis regular by Pumping lemma. Let n be number of states of FA accepting L.

Step2: Let ;= 0" then |z|=n22.
Therefore, we can write z=uvw ; Where |wv|snfvE1.
Take any string of the language L= { 00, 0000, 000000..... }
Take 0000 as string, here u=0, v=0, w=00to find i such that wwel,
Take i =2 here, then
w'w= 0(0)?00

= (00000
This string 00000 is not present in strings of language L. S0 uv‘w¢ L.

-, Itisacontradiction.

3.9 PROPERTIES OF REGULAR SETS

Regular sets are closed under following properties.
1. Union
2. Concatenation

FORMAL LANGUAGES AND AUTOMATA THEORY

Kleene Closure
Complementation
Transpose
Intersection

Union : If R and R, are two regular sets, then union of these denoted by R, + R, or

R, U R, isalsoaregular set.

Proof : Let R and R, be recognized by NFA N, and N, respectively as shown in
Figurel(a)and Figurel(b).

FIGURE 1(b) NFA for regular set R,
We construct a new NFA N based on union of N, and N, asshown in Figure 1 (c)

FIGURE 1(c) NFAfor N, + N,
Now,
L(N) = € L(N,) € + e (N,) €
=€ R,€ + €R,e€
=R +R,
Since, Nis FA, hence L(N) isaregular set (language). Therefore, R, + R, isaregular set.

FORMAL LANGUAGES AND AUTOMATA THEORY

2. Concatenation: If R and R, are two regular sets, then concatenation of these denoted

by R,R, isalso aregular set.
Proof : Let R, and R, be recognized by NFA N, and N, respectively as shown in
Figure 2(a) and Figure 2(b).

FIGURE 2{b) NFA for regular set R,
We construct a new NFA N based on concatenation of N, and N, asshownin Figure2(c).

FIGURE 2(c) NFA for regular set R R,
Now,
L(N) = Regular setaccepted by N, followed by regular set accepted by N, = R\R,
Since, L(N) isaregular set, hence R/R, is also a regular set.

Kleene Closure : If R isaregular set, then Kleene closure of this denoted by R*isalso
aregular set.

Proof: Let R isaccepted by NFA n shownin Figure 3(a).

FIGURE 3(a) NFA for regular set R

FORMAL LANGUAGES AND AUTOMATA THEORY

We construct a new NFA based on NFA N as shown in Figure 3(b).

FIGURE 3(b) NFA for regular expression for R’
Now,

L(N)={e,R,RR,RRR.,.}
= r'

Since, L(N) is aregular set, therefore R" is aregular set.

Complement : If z is a regular set on some alphabet 3, then complement of g is

denoted by ° — R or % isalsoa regular set.
Proof : Let g be accepted by NFA N = (0,2,8,5,F). It means, L(N)=R.
N is shown in Figure 4(a).

FIGURE 4(a) NFA for regular set R
We construct anew NFA n/'based on p asfollows :
(a) Change all final states to non-final states.

(b) Change all non-final states to final states.
N 'is shown in Figure 4(b)

FIGURE 4 (b) NFA

FORMAL LANGUAGES AND AUTOMATA THEORY

Now,
L(N')= {All the words which are not accepted by NFA N}
= { All the rejected words by NFA N}

=" -R
Since, L(N') isaregular set, therefore (" — R) isaregular set.

. Transpose : If Risaregular set, then the transpose denoted by g7, is also aregular set.
Proof : Let g beacceptedbyNFA N = (Q .2, ,5,/") asshown in Figure 5(a).

FIGURE 5 (a) NFA N for regular set R

If w isawordin g, then transpose (reverse) is denoted by ,,7 .
Let w = a,a,...a,
Then w” = a,a, ,...q

We construct anew) based on y using following rules :

(a) Change the all final states into non-final states and merge all these into one state and make it

(b) Change initial state to final state.
(c) Reverse the direction of all edges.
A is shown in Figure5 (b)

FIGURE 5(b) NFA N'for regular set g’

FORMAL LANGUAGES AND AUTOMATA THEORY

Let w = aya,...a, beawordin p,thenitis recognized by nr and
wl = a,a,_,..a, isrecognized by p- as shown in Figure5 (b)

In general, we say that if a word inR is accepted by n,andthen y' accepts 7.

Since, L(N") is aregular set containing all w? ;itmeans, L(N')= R .

Thus, R" isaregular set.

Intersection : if R and R, are two regular sets over ¥ , then intersection of these
denoted by R, n R, isalso aregular set.

Proof : By De Morgan's law for two sets 4 and B over R,
ANB=R*~(R*-A)U (R*-B))

SO,R " R, =Z*—((£*-R,)U(Z*-R,))

Let R, = (£*-R,) and R, = (Z*-R,)

So, R; and R, are regular sets as these are complement of R and R,.

Let R, =R, UR,

So, Ry isaregular set because it is the union of two regular sets R, and R,.
Let R, =Z*-R,

So, R isaregular set because it is the complement of regular set R;.
Therefore, intersection of two regular sets is also regular set.

FORMAL LANGUAGES AND AUTOMATA THEORY

FORMAL LANGUAGES AND AUTOMATA THEORY

REGULAR GRAMMARS

— e S ————— e

After going through this chapter, you should be able to understand :

o Regular Grammar
s Equivalence between Regular Grammar and FA
e Interconversion

41 REGULAR GRAMMAR

Definition : The grammar G=(V, T, P, S) is said to be regular grammar iff the grammar is
right linear or left linear.
A grammar G is said to be right linear if all the productions are of the form

A-—>wB and/or A ->w where 4, BeV and 7.

A grammar G is said to be left linear if all the productions are of the form
A—>Bw and/or A —>w where 4,BeV and 7.

Example 1: The grammar

S - aaB | bbA | ¢

A - aAlb

B - bBla]e
isaright linear grammar. Note that ¢ and string of terminals can appear on RHS ofany production
and if non - terminal is present on R. H. S of any production, only one non - terminal should be
present and it has to be the right most symbol onR. H. 8.
Example 2 :

The granmmar

S —» Baa| Abb | ¢

A - Aalb

B - Bbla] ¢
isaleft linear grammar. Note that ¢ and string of terminals can appear on RHS of any production

and if'non - terminal is present on L. H. S of any production, only one non - terminal should be
present and it has to be the left most symbol onL. H. S.

FORMAL LANGUAGES AND AUTOMATA THEORY

Example 3:
Consider the grammar
S - aA
A - aBjb
B -~ Abla

Inthis grammar, each production is either left linear or right linear. But, the grammar is not either
Jeft linear orright linear. Such type of grammar is called linear grammar. So, a grammar which has
at most onie non terminal on the right side of any production without restriction on the position of
this non - terminal (note the non - terminal can be leftmost or right most) is called linear
grammar.

Note ’fhat the language generated from the regular grammar is called regular language. So, there
should be some relation between the regular grammar and the FA, since, the language accepted
by FAis also regular language. So, we can constructa finite autormaton givenaregular granmar.

42 FAFROM REGULAR GRAMMAR

Theorem : LetG=(V, T, P,S)be a right linear grammar. Then there exists a language L(G)
which is accepted by a FA. i e, the language generated from the regular grammar
is regular language.

Proof :Let ¥ =(qg,, g,,....) be the variables and the start state S=¢, Let the productions in
the grammar be ’
g > F G4
g - na

4 = 5%

9n "> ¥pqan

Assume that the language L(G) generated from these productions is w. Corresponding to each
production in the grammar we canhave a equivalent transitions in the FAto accept the string w.
After accepting the string w, the FAwill be in the final state. The procedure to obtain FA from
these productions is given below : ‘

FORMAL LANGUAGES AND AUTOMATA THEORY

Step 1. ¢, which is the start symbol in the grammar is the start state of FA.

Step 2: For each production of the form

9 > wg,
the corresponding transition defined will be

an{qisw)“ 4
Step 3 : For each production of the form ¢, — w
the comesponding transition defined will be 8’ (g,, w) =g, ,where g, isthe final state,

As the string w € Z(G) is also accepted by FA, by applying the transitions obtained from
step] through step3, the language is regular. So, the theorer is proved.

Example 1 : Construct a DFAto accept the language generated by the following grammar

S - 014
A — 10B
B — 04|11

Solution :

Note that for each production of the form A -» wB, the corresponding transition will be
3(4, w)=B.Also, for each production 4 - y , we can introduce the transition 8(4,w) =g,
where ¢, isthe final state. The transitions obtained from grammar G is shown using the following
table:

Productions Transitions

S - 5(S, 01 = 4
A - 8(4, 10)=8
B .- 8B, 0)=4

B ey 5(B, 1)=g,

The FA cotresponding to the transitions obtained is shown below :

FORMAL LANGUAGES AND AUTOMATA THEORY

So,the DFA M =(0.%, 8, q,, 4) where
O={5, 4, 8,4, %> 9%} , Z={08
g, =5, 4={4,}
& is as obtained from the above table.
The additional vertices introduced are g,,4,, ;-

Example 2 : Constructa DFAto accept the language generated by the following grammar .
S —> aA| ¢
A - aAlbB| ¢
B - bB| ¢

Solution :

Note that for each production of the form 4> wB, the corresponding transition will be
8(4,w) = B.Also , for each production 4 -» w , wecanintroduce the transition 8(4,w) =¢,

where ¢, is the final state. The transitions obtained from grammar G is shown using the following ‘
table:

Productions Transitions
8(S,0)=4
S is the final state
8(d,a)=4
8(A,b)=B
Alisthe final state
5(B,b)=B
B is the final state.

FORMAL LANGUAGES AND AUTOMATA THEORY

Note : For each transition of the form 4 —y ¢, make A as the final state.
"The FA corresponding to the transitions obtained is shown below :

So, the DFA M =(0.3, 8, g,, 4) where
Q=1{S. 4,8} ,S={a,b}
g, =8, d={S, 4, B}
Sisas obtained from the above table .

4.3 REGULAR GRAMMAR FROM FA

Theorem : Let 1 =(0Q.=,58,9,,4) beafinite automaton. If L. is the regular language accepted
by FA, then there exists a right linear grammar G=(V, T, P, 8) so that L = L{G).

Proof : Let & =(0,2,5,9,,4) beafinite automata accepting L where

O ={q6:q1+-q5}

E={a,,ay,..a,}
Aregular grammar G = (V, T, P, S) can be constructed where

V= 90> G5 m-qn}

=X

S=g,
The productions P from the transitions can be obtained as shown below :
Step 1 : For each transition of the form 8(g,, @) =¢;

the corresponding production defined will be ¢, — agq,

Step 2: If ¢ e 4 i.e., ifqis the final state in FA, then introduce the production
g —>r&

Asthese productions are obtained from the transitions defined for FA, the language accepted by
FAis also accepted by the grammar,

FORMAL LANGUAGES AND AUTOMATA THEORY

FORMAL LANGUAGES AND AUTOMATA THEORY

REGULAR GRAMMARS
%
After going through this chapter, you should be able to understand :

o RegularGrammar
+ Equivalence between Regular Grammar and FA
o [Interconversion

41 REGULAR GRAMMAR

Definition : The grammar G=(V, T, P, S)is said to be regular grammar iff the grammar is
right linear or left linear,
A grammar G is said to be right linear if all the productions are of the form

A->wB and/or A >w where 4, BeV and 5 7"

Agrammar G is said to be left linear if all the productions are of the form
A—>Bw and/or A >w where 4, BeV and 7.

Example 1: The grammar

S - aaB | bbA | ¢

A - aAlb

B -y bB] ai &
is aright linear grammar, Note that ¢ and string of terminals can appear on RHS of any production
and ifnon - terminal is present on R. H. S of any production, only one non - terminal should be
present and it has to be the right most symbol on R. H. S,
Example 2:

The grammar

S - Baa|Abb| ¢

A - Aalb

B - Bbla]e
isaleft linear grammar. Note that « and string of terminals can appear on RHS of any production
and ifnon - terminal is present on L. H. S of any production, only one non - terminal should be
present and it has to be the left most symbol onL. H. S.

FORMAL LANGUAGES AND AUTOMATA THEORY

Note : For cach transition of the form 4 —y¢, make Aasthe ﬁnai state.
The FA corresponding to the transitions obtained is shown below :

So,the DFA M =(Q.3, 8, g,, 4) where
O={S, 4B}, X={a,b}
g =S8, 4d={S, 4, B}
§isas obtained from the above table .

4.3 REGULAR GRAMMAR FROM FA

Theorem : et i = (Q,2,6,9,,4) beafinite automaton. If L. is the regular language accepted
by FA, then there exists a right linear grammar G=(V, T, P, 8) so that L = L(G).

Proof : Let M =(0,2,5,9,,4) beafinite automata accepting L where

O ={q06:q1»-qn}
Z={a.,ay,..a,}
Aregular grammar G= (V, T, P, S) can be constructed where

V={qy a9}

T=%

S=gq,
The productions P from the transitions can be obtained as shown below :
Step 1 : For each transition of the form (g, @) =¢ ;

the corresponding production defined will be ¢, — ag,

Step 2. If g e 4 i.e,, ifqis the final state in FA, then introduce the production
g —>e

Asthese productions are obtained from the transitions defined for FA, the language accepted by
FAis also accepted by the grammar,

FORMAL LANGUAGES AND AUTOMATA THEORY

CONTEXT FREE GRAMMARS

After going through this chapter, you should be able to understand :

Context free grammars

Left most and Rightmost derivation of strings
Derivation Trees

Ambiguity in CFGs

Minimization of CFGs

Normal Forms (CNF & GNF)

Pumping Lemma for CFLs

Enumeration properties of CFLs

5.1 CONTEXT FREE GRAMMARS

A grammar G = (V, T, P, S) issaid to be a CFG if the productions of G are of the form :

A—>a whereae(VuT)*
The right hand side of a CFG isnot restricted and it may be null or a combination of variables and

terminals. The possible length of right hand sentential form ranges from 0to o i.e., 0 < | o | <.

As we know that a CFG has no context neither left nor right. This is why, it is known as
CONTEXT - FREE. Many programming languages have recursive structure that can be
defined by CFG'’s.

Example 1: Considerthe grammar G = (¥, T, P, S) having productions :
S — aSa | bSh| €. Check the productions and find the language generated.

Solution :
Let P, :S — aSa (RHSisterminal variable terminal)
P, : § — bSh (RHSisterminal variable terminal)
P,: S - ¢ (RHSisnullstring)
Since, all productions are of the form 4 — «, where @ e(V U T') * ,hence ¢ isaCFG

FORMAL LANGUAGES AND AUTOMATA THEORY

So, the final grammar to generate the language L= { w|n,(w) =n, (w)} sG=(V,T,P,S)
where
={S} , T ={ab}
= { So>¢e
S— aSb
S—> bSa
S§— 5§
} S isthe start symbol

5.2 LEFTMOST AND RIGHTMOST DERIVATIONS

Leftmost derivation :

fG=W,T,P,S)isaCFGand w € L(G) then a derivation § =>w is called leftmost

derivation if and only if all steps involved in derivation have leftmost variable replacement only.

Rightmost derivation :
IfG=W,T,P,S) isaCFGand w ¢ L(G), thenaderivation § =>w is called rightmost

derivation if and only if all steps involved in derivation have rightmost variable replacement only.

Example 1 : Consider the grammar S — § + S| S * 5| a|b. Find leftimost and rightmost
derivations forstring y = g * g + b.

Solution :

Leftmostderivation fory = g*g 4+ %
Ll (Usings — 5*§)
i *s (The first left hand symbolisa, sousing § —)
=atS+S (Using § —» § + §,inordertoget g + 5)
=a*a+Ss (Second symbol from theleftisa, so using § — a)

=a*a+b (The last symbol from the lefiis b, sousing § —»)

FORMAL LANGUAGES AND AUTOMATA THEORY

Rightmost derivation for w = g * g + b
S8 (Usings - §*5)

o §*S+§ (Since, in the above sentential form second symbol from the right is * so,

we can not use § — a|b. Therefore, weuse § — S+ §)
?S*S+b (Using § —)
:;‘:'S*acb (Using § —» a)

?a*a+b (Using § — a)

Example 2 : ConsideraCFG S — b4|aB, 4 — aS|addja, B —> bS|aBB|b . Find
leftmost and rightmost derivations for v = agabbabbba -

Solution :

Leftmost derivation for v - ggabbabbba :

S = aB (Using § — aB to generate first symbol of w)
aaBB (Since, second symbol is a,soweuse B —» aBB)
aaaBBB (Since, third symbol is a.soweuse B — aBB)
aaabBB (Since fourth symbol is b, soweuse B — b)
aaabbB (Since, fifth symbolisb,soweuse B —» b)

-> aaabbaBB (Since, sixth symbol isa, soweuse B8 — aBB)
aaabbabB (Since, seventh symbol is b,soweuse B —)
aaabbabbS (Since, eighth symbol is b, soweuse B — bS)
aaabbabbbA (Since, ninth symbol is b, sowe use § —» h4)
aaabbabbba (Since, the tenth symbolisa,sousing 4 — a)

Rightmost derivation for v = gaabbabbba
S = aB (Using § — aB to generate first symbol of w)

= aaBB (We need a as the rightmost symbol and second symbol from the left side, so we
use B — aBB)

aaBbS (Weneed aas rightmost symbol and this is obtained from Aonly, weuse B — 5S)

aaBbbA (Using S — b4)

aaBbba (Using 4 — a)

aaaBBbba (We need b as the fourth symbol from the right)

aaaBbbba (Using B — b)

aaabShbba (Using B —» bS)

4

=
=
=

R’

FORMAL LANGUAGES AND AUTOMATA THEORY

Figure (c) Parse tree for y = ab Figure (d) Parse tree for w = ab
So, the given grammar is ambiguous.

541 Removal of Ambiguity

5.4.1.1 Left Recursion

A grammar can be changed from one form to another accepting the same language. Ifa grammar
has left recursive property, it is undesirable and left recursion should be eliminated. The left
recursion is defined as follows.

Definition :A grammar G is said to be left recursive if there is some non terminal A such that
A4 =* Aa.Inotherwords, in the derivation process starting from any non - terminal A, if a sentential
form starts with the same non - terminal A, then we say that the grammar is having left recursion.

Elimination of Left Recursion
The left recursion in a grammar G can be eliminated as shown below. Consider the A - production

oftheform A—Ax|Aayda; Aa,\B\B, | By B
where g,'s do not start with A. Then the A productions can be replaced by
A B A BA |BA o By A
A a4 a4 |z A

Note that «,'s do not start with 4t.

Example 1 : Eliminate left recursion from the following grammar
E—- E+T|T
T—T*F|F
F—»(E) |id

FORMAL LANGUAGES AND AUTOMATA THEORY

5.5 MINIMIZATION OF CFGs

As we have seen various languages can effectively be represented by context free grammar. All
the grammars are not always optimized. That means grammar may consists of some extra symbols
(non - terminals). Having extra symbols unnecessary increases the length of grammar.
Simplification of grammar means reduction of grammar by removing useless symbols. The
properties of reduced grammar are given below :

1. Eachvariable (i.e. non - terminal) and each terminal of G appears in the derivation of some
word in L.

2. There should not be any production as x —» ¥ where X and Y are non - terminals.
3. If e isnotinthe language L then there need not be the production x —»e.
We see the reduction of grammar as shown below :

Reduced grammar

useless symbols e productions unit productions

Removal of Elimination of J Removal of

5.5.1 Removal of useless symbols

Definition : A symbol X is useful if there is a derivation of the form
S=>'axf="w

Otherwise, the symbol X is useless. Note that in a derivation, finally we should get string of
terminals and all these symbols must be reachable from the start symbol S. Those symbols and
productions which are not at all used in the derivation are useless.

Theorem 5.5.1 :letG=(V, T, P, S)beaCFG We can find an equivalent grammar
G, = (V,,T;,P,,S) suchthatforeachAin (V;UT,) there exists o and £ in (FUT))* and x in

T* forwhich S =" adfg =" x.

FORMAL LANGUAGES AND AUTOMATA THEORY

P T,

S » a|BblAa a.b
A-»aB a,b
B alAa] ab

Theresulting grammar G, =(V,, 7,,P,,S) where
= {S,A,B}
= {ab}
= {
S - a|BbjaA
A < aB
B - alAa
} S isthe start symbol
such that each symbol Xin (¥, w 7,) hasaderivation ofthe form §=" axg =" w.

5.5.2 Eliminating < - productions

Aproduction of the form 4 —» « is undesirable ina CFG unless an empty string is derived from
the start symbol. Suppose, the language generated from a grammar G does not derive any
empty string and the grammar consists of - productions. Such e - productions can be removed.
An ¢ - production is defined as follows :

Definition1: LetG=(V,T,P, S)beaCFG. A production in P of the form

A—> e

iscalledan e - production or NULL production. After applying the production the variable A is
erased. For each Ain V, if there is a derivation of the form

A4=" e
then A isa nullable variable.
Example : Consider the grammar
S = ABCa|bD
A Y BC|b
B

- bl e

FORMAL LANGUAGES AND AUTOMATA THEORY

Step 2 : Construction of productions P, . Addanon e- productioninPto 7, . Takeall the
combinations of nullable variables in a production, delete subset of nullable variables one by one
and add the resulting productions to P, .

Productions Resulting productions (7,)

S BAAB S -» BAAB|AAB |BAB|BAA|
AB|BB|BA|AA|A|B

A 0A2 A - 0A2[02

A . 2A0 A - 2A0]20

B AB B - AB|B|A g

’[g 1B B 1B]1 |

We can delete the productions of the form A —» A.In p, , the production B -» B canbe
deleted and the final grammar obtained after eliminating ¢ -productions is shown below.

The grammar G, = (V,,T;,P,,S) where

v, = {S,A,B,C.D}

T {ab,c,d}

P, {S > BAAB|AAB|BAB |BAA|AB|BB|BA|AA|A|B

A 5 0A2]|02[2A0]20
B » AB|A|1B]|1
} S isthe start symbol

5.5.3 Eliminating unit productions
Consider the production 4 — 8. The left hand side of the production and right hand side ofthe
production contains only one variable. Such productions are called unit productions. Formally,a
unit production is defined as follows.
Definition : LetG=(V,T,P,S)beaCFG. Any production in G of the form

A—>B
where A, p ey isaunit production,

In any grammar, the unit productions are undesirable. This is because one variable is simply
replaced by another variable.

FORMAL LANGUAGES AND AUTOMATA THEORY

In a CFG, there is no restriction on the right hand side of a production. The restrictions are
imposed on the right hand side of productionsina CFGresulting in normal forms. The different
normal formsare :

1. Chomsky Normal Form (CNF)
2. Greiback Normal Form (GNF)

5.6.1 Chomsky Normal Form (CNF)

Chomsky normal form can be defined as follows.

Non - terminal —s Non - terminal Non - terminal
Non - terminal —» terminal

The given CFG should be converted in the above format then we can say that the grammar is in
CNF. Before converting the grammar into CNF it should be in reduced form. That means
remove all the useless symbols, e productions and unit productions from it. Thus this reduced
grammar can be then converted to CNF.

Definition :
LetG= (V, T,P,S)beaCFG The grammar G is said to be in CNF if all productions are
ofthe form
A B BC
or
A -
where A,Band CeV andaeT.
Note that if a grammar is in CNF, the right hand side of the production should contain two
symbols or one symbol. If there are two symbols on the right hand side those two symbols must
be non - terminals and if there is only one symbol, that symbol must be aterminal.

Theorem 5.6.1 : Let G=(V, T, P, S) be a CFG which generates context free language
without <. We can find an equivalent context free grammar G, =(V.T ,P,,S) in CNF such that

L(G)=L(G,) i.e., all productionsin G, are of the form

A - BC
or
A -

FORMAL LANGUAGES AND AUTOMATA THEORY

Thus, from (7), (8) and (9), the resultant grammar becomes :
SV, S|V, |alb
V> -
V,= [
Vi — SV,
v, - SV,
v,-»1
Ve—]

Now, in the resultant grammar (C), following is the production which is not in the form of CNE:
EIAAA

We can write this production as :
SV, V,
Vs = ViV

Thus, from (10) and (11), the resultant grammar becomes :
S >V SW,V,|db
V-
V,—[
v, >V, V,
v, sV,
v, > 5V,
| 1)
V>]

Thus, the resultant grammar (D) is in the form of CNF, which is the required solution.

5.6.2 Greibach Normal form (GNF)

Greibach normal form can be defined as follows :

Non - terminal — one terminal. Any number of non - terminals

Example :
isin GNF
isin GNF

FORMAL LANGUAGES AND AUTOMATA THEORY

From the subtree shown in figure (b) , we get ¢ :', aaSe O § s 2 Sz, andconsidering

the subtree shown in ﬁgure(c),' Weget §osqg OF § Rl 7

The subtree shown in figure (b) can be added as many times as we like in the parse tree
shown in figure (a). S0, §=z! 8z} = z,'z, 2}

Therefore, string z can be written as zyz,z,y for some uand y substrings of z. The substrings
z, and z, can be pumped as many times as we like. Replacing z;, z; and z, by v, wand x

respectively, we get z=uvwxy and g => w'wx'y forsomei=0,1,2,
Hence , the statement of theorem is proved.

Application of Pumping Lemma for CFLs

We use the pumping lemma to prove certain languages are not CFL. We proceed as we have
seen in application of pumping lemma for regular sets and get contradiction. The result of this
lemma is always negative.

Procedure for Proving Language is not Context - free

The following steps are considered to show a given language is not context - free.

Step1:

Supposethat £ iscontext - free. Let 1 be the natural number obtained by using pumping lemma.
Step 2:

Chooseastring xc L such that {x| =1 using pumping lemma principle write z=uvwxy.

Step 3:

Find suitable i so that wv 'wx ‘yz 1. . Thisisacontradiction. So L isnot context - free.

FORMAL LANGUAGES AND AUTOMATA THEORY

Case 2:

vea* and xc.*. Let ,_,» and pg=n!. Pumping v and x, (¢+1) times, we get :
2= uv"“wx"”y -

Inz',no.ofa's willbe n-p+nl+ p=nlyn,

No.of b's in Z' will remain n! +n. Hence, no. ofa's=no. of b's in Z'.

Similarly, in other cases, we can arrive at strings not as per specification of L.
Hence, L is not context free.

5.8 CLOSURE PROPERTIES OF CFLs

The closure properties that hold for regular languages do not always hold for context free languages.
Consider those operations which preserve CFL.

The purpose of these operations are to prove certain languages are CFL and certain languages
are not CFL.

Context-free languages are closed under following properties.
Union
Concatenation and

Intersection

1
2
3. Kleene Closure (Context-free languages may or may not close under following properties)
4
5

Complementation

Theorem 5.8.1 :If 7, and L, aretwo CFLs, then unionof Z, and L, denoted by L; + L,
or [, U L, isalsoa CFL.

Proof :

Let CFG G, = (¥,,T,,P,S) generates L; and CFG G, = (V,,T,,P,S) generates L,

and G=(V,T, P,S) generates L = L; + L,.

We construct G as follows :

Step 1: Rename the variables of CFG G,

Ifv, = {S, 4, B,..., X} ,thentherenamed variables are {S;, 4;, B;,...X;} . Thismodification
should be reflected in productions also.

FORMAL LANGUAGES AND AUTOMATA THEORY

Step 2 : Rename the variables of CFG G,

If ¥, ={S,4,B,..X}, then the renamed variables are {S;, 4y, B,....X5}. This
modification should be reflected in production also.

Step 3 : We get of the productions of G; and G, to get productions of G as follows :

S — S§;|S,,where S, and §, are starting symbols of grammars G; and G, respectively and
S) -productions and S, - productions remain unchanged.

r="rv7,,
V ={S\,4,,B,,. X} U{S,,4,,B,,..X,}

Since, all productions of Gy and G, including § — S; | S, are in context-free form, so
GisaCFG.

Language generated by G :
L(G) =Language generated from (S; or S5)
=Language generated from S, or language generated from S,
= L(Gy) or L(G) (Since, §; and §, are starting symbols of G; and G, respectively.)
= I or L, (Since, G, produces L) and G, produces L; .)
=L+

Hence, statement of the theorem is proved.

Example : Considerthe CFGs S — aSh|ab and S —» ¢Sdd | edd , which generate
languages I; and L, respectively. Construct grammar for L = Ly + L.

Solution :

Let G, generates [; and G, generates [, and G = (V,T, P,S) generates L = I + L.

Renaming the variables of G, and G,, we get

v, ={S,} and ¥, ={S,}, where §; - productions are $; — aSb | ab, and
S, - productions are S, — cS,dd | cdd

FORMAL LANGUAGES AND AUTOMATA THEORY

FORMAL LANGUAGES AND AUTOMATA THEORY

PUSH DOWN AUTOMATA

After going through this chapter, you should be able to understand :

Push down automata

Acceptance by final state and by empty stack
Equivalence of CFL and PDA

Interconversion

Introduction to DCFL and DPDA
6.1 INTRODUCTION

APDA is an enhancement of finite automata (FA). Finite automata with a stack memory can be
viewed as pushdown automata, Addition of stack memory enhances the capability of Pushdown
automata as compared to finite automata. The stack memory is potentially infinite and it is a data
structure. Its operation is based on last - in - first - out (LIFO). It means, the last object pushed
on the stack is popped first for operation. We assume a stack is long enough and linearly arranged.
We add or remove objects at the left end.

6.1.1 Model of Pushdown Automata (PDA)

A model of pushdown automata is shown in below figure. It consists of a finite tape, areading
head, which reads from the tape, a stack memory operating in LIFO fashion.

\e— Input Tape

Finite State Control — Stack

FIGURE : Model of Pushdown Automata

FORMAL LANGUAGES AND AUTOMATA THEORY

There are two alphabets ; one for input tape and another for stack. The stack alphabet is denoted
by r and input alphabet is denoted by 5 . PDA reads from both the alphabets ; one symbol
from the input and one symbol from the stack.

6.1.2 Mathematical Description of PDA
A pushdown automata is described by 7 - tuple (Q,2,1",8, ¢,,Z,.F) , Where
1. Q isfinite and nonempty set of states,
2. 3 isinputalphabet,
3. T isfinite and nonempty set of pushdown symbols,
4. g isthe transition function which maps
From Q % (T U {g}) x T to (finite subset of) O x I'¥,
5. g, & Q,isthestarting state,
6. Z, e I',isthestarting (top most or initial) stack symbol, and
7. F c Q,isthesetoffinal states.

6.1.3 Moves of PDA
The move of PDA means that what are the options to proceed further after reading inputs in

some state and writing some string on the stack. As we have discussed earlier that PDA is

nondeterministic device having some finite number of choices of moves in each situation.
The move will be of two types :

1. Tnthefirsttype of move, an input symbol is read from the tape, it means, the head is advanced
and depending upon the topmost symbol on the stack and present state, PDA has number of
choices to proceed further.

In the second type of move, the input symbol is not read from the tape, it means, head is not
advanced and the topmost symbol of stack is used. The topmost of stack is modified without
reading the input symbol. It is also known asan e -move.

Mathematically first type of move is defined as follows.

5(9,a,2) ={(pya)(p2:@3) Pys@,)} , Where for 1 < i < n,q,p, are states in

Q,ack, Zel,and ael*.
PDA reads an input symbol a and one stack symbol Z in present state ¢ and for any value(s) of
i, enters state p, , replaces stack symbol Z by string &, I * , and head isadvanced onecell on
the tape. Now, the leftmost symbol of string ¢, is assumed as the topmost symbol on the stack.
Mathematically second type of move is defined as follows.

8(g,6,Z2) = {(p1: @ (P2:@3)ser(Prs @)} 5 where for 1 < i < n, g, p, are states in

Q,acl, Zel,and a,eT *.

FORMAL LANGUAGES AND AUTOMATA THEORY

PDA does not read input symbol but it reads stack symbol Z in present state g and for any
value(s) of #, enters state p,, replaces stack symbol Z by string a, € I' *, and head is not

advanced on the tape. Now, the lefimost symbol of string «, is assumed as the topmost symbol
on the stack.

The string «, be any one of the following :

l. @, =e inthiscase the topmost stack symbol Z,,, iserased and second topmost symbol
becomes the topmost symbol in the next move. It is shown in figure ().

5

FIGURE(a): Move of PDA
2. a, = c,c e I ,inthis case the topmost stack symbol Z,,, is replaced by symbol c. It is

shown in figure(b)

)

FIGURE(b): Move of PDA
3. @, =c¢,c;...c, »inthis case the topmost stack symbol Z,,, isreplaced by string cic;,. .. c,,-
Itis shown in figure(c).

FORMAL LANGUAGES AND AUTOMATA THEORY

FIGURE(c): Move of PDA

6.1.4 Instantaneous Description (ID) of PDA

LetPDA M = (02,15, 40, Zy.F) » thenits configuration at a given instant can be defined by
instantaneous description (ID). An ID includes state, remaining input string, and remaining stack
string (symbols). So, anID is (¢,x,@) ,where g e Q. xe Z*, a e I'*.

The relation between two consecutive IDs is represented by the sign |—— :
We say (¢,ax,ZB) |57(P»*.@B) if 8 (g, a, Z) contains (p,a), where Z,B,acT*,a
maybenullora €Z, p,g € Q forM

The reflexive and transitive closure of the relation |77 is denoted by |~,&
Properties :
1. If (q,x,a)lr;(p,‘:’,d),whcre ael*xel*, and p,g €Q,thenforall y eZ *.

@9, 25, y.@),
2. If (q.xy,a)l—,c,(p,y,a), where a eT*x,yeZ*, and p,q €Q, then

(‘],x’a')l';T(P,e,a), and

3. If (q,X,d)l%(P,G,ﬁ), where a, Bel*xei*, and p,geQ. then

(¢, xa 7)]{,—(p,e,ﬂ7), where y eI *

FORMAL LANGUAGES AND AUTOMATA THEORY

6.1.5 Acceptance by PDA

Let M'be a PDA, the accepted language is represented by N(M). We defined the acceptance by
PDA in two ways.

1. Let M =(Q,ZT,3, q,,2Z,,F) ,then N(M) is accepted by final state such that

N (M)=(wi(qo.w,Z)5(a €.8) , where ¢ € O, weS*Z,,fel*, and

q; €F}

It is similar to the acceptance by FA discussed earlier. We define some final states and
the accepted language N(M) is the set of all input strings for which some choice of moves
leads to some final state.

Let M =(Q.2,1.5.9,.Z,.¢) , then N(M) is accepted by empty stack or null stack such

that N (M)= {wi(qy.w.Z,)54 P:c.€), where p € O, w e *}

The language N(M) is the set of all input strings for which some sequence of moves
causes the PDA to empty its stack.

Note : Ifacceptance is defined by empty stack then there is no meaning of final state and it is
represented by ¢ .

Example : consider a PDA M = ({g,.9,,9,}.{a,c}1a,Z;},5.9,Z049,}) shown in
below figure. Check the acceptability of string aacaa.

a, Zy, aZ, a,a, €

c,aa Lo Lo :
8 OERoEAN gy

a,a,aa
FIGURE : PDA accepting {a"ca":n=>1}

Note : Edges are labeled with Input symbol, stack symbol, written symbol on the stack.

FORMAL LANGUAGES AND AUTOMATA THEORY

Solution :
The transition function § isdefined as follows :

8(q0:a,Z0) = {(q0,9Z,4)} »
8(qq,a,a)={(4,.aa)},
8(gq5¢,a) = {(g),a)} 5
8(q,,a,a) ={(q,€)}, and

3(q,.6,2,) = {(92,Z)}
Following moves are carried out in order to check acceptability of string aacaa :

(g4, aacaa ,ZO)‘—(qo,acaa .aZgy)
|—(q,,,cua vaaZ)
|—(ql ,aa,aaZ ;)

l_(qlva'azo)

I_(QUE’ZO)

l—(‘lz’e»zo)

Hence, (¢,,aacaa ,lo)iﬁ(qz,e,lo) .
Therefore, the string aacaa is accepted by 7.

6.2 CONSTRUCTION OF PDA

In this section, we shall see how PDA's can be constructed.

Example 1 : Obtain 2 PDA to accept the language L(M) = { wCw"| w e (a+b)*} where

R is reverse of W.
Solution:

Itis clear from the language L(M) = { wCw®} thatif v =apb

then reverse of w denoted by & willbe % _ pp, and the language L willbe y,cy2
i.e., abbCbba which is a string of palindrome.

FORMAL LANGUAGES AND AUTOMATA THEORY

To accept the string :

The sequence of moves made by the PDA for the string aabCbaa is shown below.
Initial ID

(g¢> aabChaa, Z,) = (g0, abCbaa, aZ,)
- (99, bCbhaa, aaZ;)
|- (90, Cbaa, baaZ;)
|- (g1,baa baaZ,)
= (q1,aa,aaZ,)
3 (91,a,aZ,)
|- (91-6.2,)
o (92 & Z)
(Final Configuration)

Since g, is the final state and input string is € in the final configuration, the string aabCbaa
is accepted by the PDA .

To reject the string :
The sequence of moves made by the PDA for the string aabCbab is shown below .
Initial [D
(g9 aabCbab, Z;) (qy. abCbab, aZ,)
(g0, bCbhab, aaZ,)
(90, Chab, baaZy)
(q,, bab, baaZy)
(q;, ab, aaZy)
(41, b, azy)
(Final Configuration)
Since the transition &(q,, b, a) isnot defined, the string aabChab is not a palindrome and
the machine halts and the string is rejected by the PDA.

Example 2 : Obtain a PDA to accept the language L = { a" 4" n > 1} by a final state.

Solution :

The machine should accept n number of a's followed by n number of b's.

FORMAL LANGUAGES AND AUTOMATA THEORY

6.3 DETERMINISTIC AND NONDETERMINISTIC PUSHDOWN AUTOMATA

In this section, we will discuss about the deterministic and nondeterministic behavior of pushdown
automata.

6.3.1 Nondeterministic PDA (NPDA)

Like NFA, nondeterministic PDA (NPDA) has finite number of choices for its inputs. As we
have discussed in the mathematical description that transition function § which maps from
0 x (2 U {€}) x T to (finite subset of) O x I' *. Anondeterministic PDA accepts an input if
asequence of choices leads to some final state or causes PDA to empty its stack. Since, sometimes
it has more than one choice to move further on a particular input ; it means, PDA guesses the
right choice always, otherwise it will fail and will be in hang state.

Example : consider a nondeterministic PDA M = ({g,},{a.b}.{a,b,Z},0.9,,Z.¢), for the

language I, = {a"b" : n > 1} ;where § is defined as follows :
3(qs:€,Z) = {(qo, ab),(qq,aZb)} (Two possiblemoves forinput e onthetape and Zon the stack),

é (‘lo,a,a) = {(Qo’e)} ’ and é (QD!b’b) = {(qu;e)}
Check whether string w = aabb is accepted ornot ?
Solution : Initial configuration is (g,,aabb, Z) . Following moves are possible :

(o, aabb,ab) ~> (go,abb,b) —» &
(qa,aabb,Z){
(go,aabb,aZb) ——w (q,,abb,Zb)

(go.abb,abb) (go-abb.aZbb)

(g, bb,bb) (go,bb, Zbb)

(QO)bxb)
(gy.bb,abbb) (qo,bb,aZbbb)
(90,€:€)

] o
Hence, w = aabbis accepted by empty stack.

FORMAL LANGUAGES AND AUTOMATA THEORY

One thing is noticeable here that only one move sequence leads to empty store and other don't.
In other words, we say that some move sequence(s) leads to accepting configuration and other
lead to hang state.

6.3.2 Deterministic PDA (DPDA)

Deterministic PDA (DPDA) is just like DFA, which has af most one choice to move for certain

input. APDA M =(Q,%,T,6,49,,Z,, F) isdeterministic if it satisfies both the conditions given

as follows :

1. Foranygq € Q,ae(Tw {e})' ,and Z €I, & (g, a, Z) has at most one choice of move.

2. Forany ge Q,and 7z e, if 8(q,€ 2) is defined i.e. 8(q, ¢ Z) # ¢, then
8(g,a,Z) = ¢ forall g ¢ &

Example : Consider a DPDA M = ({g4,q,},{a.c},{@,Zy},6,94.Zy,¢) accepting the

language {a"ca" :n >1}.where § is defined as follows :

6(g0,a,Zy) = {(qy,9Z,)}
6(qq,a.a) ={(gp,aa)},
5(‘10»0»0) = {(ql’a)};
8(qy,a,a) = {(g,€)}, and 8(g;,€,Zy) = {(g),€)}
Check whether the string w = aacaa is accepted by empty stack or not ?
Solution :
We see that in each transition DPDA has at most one move. Initial configuration is

(qq,aacaa, Z,) . Following are the possible moves.
(qq,aacaa ,Zy) —> (qy,acaa,aZ,) —» (gy,caa,aaZy) —> (qy,aa,aaZ,)
{

(QIsE’G) = (qhe’zo) & (QDavaO)
Hence, the string w = aacaa is accepted by empty stack.

As we have discussed in earlier chapters that DFA and NFA are equivalent with respect to
the language acceptance, but the same is not true for the PDA.

For example, language 7, ={ww *:w € (a U b) *} isaccepted by nondeterministic PDA,
cannot by any deterministic PDA. A nondeterministic PDA can not be converted into equivalent
deterministic PDA, but all DCFLs which are accepted by DPDA, are also accepted by NPDA.
So, we say that deterministic PDA is a proper subset of nondeterministic PDA. Hence, the
power of nondeterministic PDA is more as compared to deterministic PDA.

FORMAL LANGUAGES AND AUTOMATA THEORY

6.4 ACCEPTANCE OF LANGUAGE BY PDA
The language can be accepted by a Push Down Automata using two approaches.

1. Acceptance by Final State : The PDA accepts its input by consuming it and then it enters
in the final state.

Acceptance by empty stack : On reading the input string from initial configuration for
some PDA, the stack of PDA gets empty.

6.4.1 Equivalence of Empty Store and Final state acceptance

Theorem:
If M, =(0,,2,T,,8,,p,,Z,,4) isaPDA accepting CFL L by empty store then there

existsPDA M, =(0,,2.13,8,, p1,Z,,{q,}) whichaccepts L by final state.

Proof :
First we construct PDA M, based onPDA M, and then we prove that both accept L.

Step 1 : Construction of PDA M, based on given PDA A,

z issame for both PDAs. We add a new initial state and a new final state with given PDA 1, .

So, 0, =0, Vi{p,vgq,}

The stack alphabet T, of PDA s, contains one additional symbol Z, with T, .

So, I, =T, U {Z,}
The transition function &, containsall the transitions of given PDA 1, and two additional transitions
(R, and Ry) asdefined as follows:

Ry :6,(p2i€,Z,) ={(p1,2,2,)},

R,:6,(q,a,2)=6,(q,a,Z) forall (¢,e,Z)in Q, x (£ U {e}) x T,

(the original transitions of A,), and
Ry:6,(9,€,Z,)={(q,,€)} forall g € Q,

Bythe R, , &, moves fromitsinitial ID (p,,e,Z,) totheinitial ID of », By R, , A, usesall the
transitions of u, afterreaching the initial ID of », and by using Ry », reaches the final state ¢ §if

FORMAL LANGUAGES AND AUTOMATA THEORY

The block diagram is shown in below figure.

‘a €,2,,2, 2, €,Z,,a

FIGURE : Block diagram of PDA u,

Step 2 : The language accepted by PDA M, and PDA M,
The behaviorsof A, and M, are same except the two by e -movesdefinedby Ry and Rj.
Let string w e [andaccepted by A, then

(p.,w,Z,)lM'—‘(q,e,e) where ¢ € 0, (Result 1)

For M,,theinitial IDis (p,,w,Z,) and it can be written as (p,,ewe2,). So,
(P2 €& Zy) |5 (p1s,21Z,) (Thisinitial IDof M,)

| (@.€.22) (by R, and Result 1)

|- @,,6.@) aeT; By Ry)
Thus, if M, accepts w, then M, also acceptsit.

Itmeans L(M,)c L(M,) (Result 2)
Letstring w ¢ L and accepted by PDA M, , then

(preweZ,) ‘E (pwZ,Z,) By Ry) (Result 3)

iz (@.6.2,) By R,) (Result 4)

1ﬁ; (q[9esa) a Er; (By R3)
Note : The Result 3 is the initial ID of M,. The Result 4 shows the empty store for M, if
symbol Z, is not there.

FORMAL LANGUAGES AND AUTOMATA THEORY

For M,,theinitial IDis (p,, w,Z,)

So, (P1sw,Z,) 577 (9,€,€) ,where ¢ € Q, (ByResult3 and Result4) Thus, if M, accepts
w,then M, also accepts it.
It means, L(M,) < L(M,) (Result 5)

Therefore, L = L(M,)= L(M,) (From Result 2 and Result 5)
Hence, the statement of theorem is proved.

Example: Consider a nondeterministic PDA M, = ({g, }, {a.b}. {a.b, S}, 8,4,.5,4) which
accepts the language 7 = {a"p" : n > 1} by empty store, where § is defined as follows :
6(q9,€,8)={(qp,ab), (g,,aSb)} (Two possible moves),
8(g0,a,a) ={(g,,€)} , and & (qq,b,b) = {(g,,€)}

Construct an equivalent PDA M, which accepts L in final state and check whether string
w = aabb is accepted or not ?

Solution : Following moves are carried out by PDA M, in order to accept yw = gabb :

(gq,aabb,S)]— (qq,aabb,aSbh)

]— (q,.abb, Sb)

|—(g0-abb,abb)

[—(qq, b,)
|—(a0.0.5)

I_ (gy€,€)

Hence, (49,aabb,5) |- (4o, €,€)
Therefore, yw = aabb isacceptedby M,.

FORMAL LANGUAGES AND AUTOMATA THEORY

FORMAL LANGUAGES AND AUTOMATA THEORY

TURING MACHINES

After going through this chapter, you should be able to understand :

Turing Machine

Design of TM

Computable functions

Recursively Enumerable languages
Church's Hypothesis & Counter machine
Types of Turing Machines

7.1 INTRODUCTION

The Turing machine is a generalized machine which can recognize all types of languages viz,
regular languages (generated from regular grammar), context free languages (generated from
context free grammar) and context sensitive languages (generated from context sensitive grammar).
Apart from these languages, the Turing machine also accepts the language generated from
unrestricted grammar. Thus, Turing machine can accept any generalized language. This chapter
mainly concentrates on building the Turing machines for any language.

7.2 TURING MACHINE MODEL

The Turing machine model is shown in below figure . It is a finite automaton connected to read -
write head with the following components :
. Tape
. Read - write head
Control unit

Tape

Tala[a] [ebfbT....T 1]

Read-write Head

Control
Unit

FIGURE : Turing machine model

FORMAL LANGUAGES AND AUTOMATA THEORY

Tape : Itisatemporary storageandis divided into cells. Each cell can store the information of
only one symbol. The string to be scanned will be stored from the left most position on the tape.
The string to be scanned should end with infinite number of blanks. :

Read -write head : The read - write head can read a symbol from where it is pointing to and
it can write into the tape to where the read - write head points to.

Control Unit: The reading/ writing from / to the tape is determined by the conirol unit. The
different moves performed by the machine depends on the current scanned symbol and the
current state. The tead - write head can move either towards left or right i.¢., movement can be
on both the directions. The various moves performed by the machine are ;

1. Change of state from one state to another state
2. The symbol pointing to by the read - write head can be replaced by another symbol.
3. The read - write head may move either towards left or towards right.

The Turing machine can be represented using various notations such as
o Transition table
. Instantaneous description
. Transition diagram

7.2.1 Transition Table

The table below shows the transition table for some Turing machive. Later sections describe how
1o obtain the transition table.

Tape Symbols (I')
a b X Y

(qh X, R) 2 - (93, Y, R)

G a R @t - @B | -

(Ch, a, L) &4 (9> X, R) (%s Y, L) -

- * - (g3. ¥, R) 44, 8, B

FORMAL LANGUAGES AND AUTOMATA THEORY

Note that for each state g, there can be a corresponding entry for the symbol in 1. Inthis table
the symbols a and b are input symbols and can be denoted by the symbol 5. Thus S I

excluding the symbol B. The symbol B indicates a blank character and usually the string ends
with infinite number of B's i, e., blank characters. The undefined entries indicate that there are no
- transitions defined or there can be a transition to dead state. When there is a transition to the

dead state, the machine halts and the input string is rejected by the machine. it is clear from the
table that

§:0xTw(@x Tx{LR})

where 0= {490,419, ¢3-94}5 T={a, b}

I'={a, b,X,Y,B}

qo istheinitial state;” Bisaspecial symbol indicating blank character

F ={¢,} whichisthe final state,
Thus , a Turing Machine M can be defined as follows.
Definition : The Turing Machine M =(Q.%,T,8,q,,8,F) where

Qs setof finite states

3 is set of input alphabets

I issetoftape symbols

& istransition function Q xI'to (Q xI'x{L,R})

g, isthe initial state

B isaspecial symbol indicating blank character

F @ issetoffinal states.

7.2.2 Instantaneous description (ID)

Unlike the ID described in PDA, in Turing machine (TM), the ID is defined on the whole string
{ not on the string to be scanned) and the current state of the machine.

Definition :

AnID of TM isastring in a ¢, where q is the current state, « g is the string made from tape

symbols denoted by yi. €., @ and 8 e I'*. Theread - write head points to the first character of
the substring A. The initial I is denoted by go8 where q is the start state and the read - write

head points to the first symbol of o from left. The final ID is denoted by o898 where ge F is
the final state and the read - write head points to the blank character denoted by B.

FORMAL LANGUAGES AND AUTOMATA THEORY

Examp!é : Consider the snapshot of a Turing machine
Tape
galiﬁzlaslquziﬂﬂacimlaﬂ

Read-write Head -

" Control
Unit

In this machine, each «,eI' (i.e.,each g, belongsto the tape symbol). In this snapshot, the
symbol 4 is under read - write head and the symbol towards left of g, 1.e, g, isthe current
state. Note that, in the Turing machine, the symbol immediately towards left of the read - write
head will be the current state of the machine and the symbol immediately towards right of the
state will be the next symbol to be scanned. So, in this case an ID is denoted by

Gty Ay gy Qs Qg
where the substring aa,asa, towards left of the state g, is the left sequence, the
substring a,a,a,a..... towards right of the state g, is the right sequence and ¢, isthe current state
of the machine. The symbol a; is the next symbol to be scanned.
Assume that the current ID of the Turing machine is aya,4,0,9,350,0,05
snapshot of example. i :
Suppose, there is a transition 8(g,, a5) = (43,81, R)

Tt means that if the machine is in state g, and the next symbol to be scanned is a5, then the
machine enters into state g, replacing the symbol a; by & and R indicates that the read - write
head is moved one symbol towards right. The new configuration obtained is

0,850, b14305045

This can be represented by 8 MOVE S 0,,a,a, 4, 00513y | ~@10330, 1123854708

Similarly if the current ID of the Turing maching is ,a,0,0,9,d5a50,45
and there is a transition

5(q4,a5)=(q;.¢1,L)
means that if the machine isin state ¢, and the next symbol to be scanned is a5, thenthe machine
enters into state g, replacing the symbol a5 by ¢, and L indicates that the read - write head is
moved one symbol towards left. The new configuration obtained is

Q333G 3401953708

FORMAL LANGUAGES AND AUTOMATA THEORY

This can be represented by amove as 6,a,0,4,4,05060,05.v |- #0305 G184¢,060, 0

This configuration indicates that the new state is g, , the next input symbol to be scanned
is g, . The actions performed by TM depends on

1. The current state.

2. The whole string to be scanned

3. The current position of the read - write head
The action performed by the machine consists of

1. Changing the states from one state to another

2. Replacing the symbol pointed to by the read - write head

3. Movement of the read - write head towards left or right.

7.2.3 The move of Turing Machine M can be defined as follows

Definition : Let M =(Q,5T,6.9,.8,F) be a TM. Let the ID of M be
@y @y GGy Ty eneenay WheETe @ T for 1< j<n-1, g e isthe current state and a4, as
the next symbol to scarmed. If there is a transition (g,) =(p, b, B)
thenthe move of machine Mwillbe a,a,a4.....a,_1ga, a4 p0a, =

Ifthereis a transition g, a;) =(p, b, L)
then the move of machine M will be

A3 433 Qpayemn-ly

7.2.4 Acceptance of a language by TM
The language accepted by TM is defined as follows.

Definition ;

Let M = (Q,2,1,6.4,,B,F) bea TM. The language L(M) accepted by M isdefined as
L(M)={wigow}- *ay p &, wWhere weE*, pe F and o, @, & T'*}
i.e., setofall those words win 3+ which causes M to move from start state g, to the final
state p. The language accepted by TM is called recursively enumerable language.

The string w which is the string to be scanned, should end with infinite number of blanks.
Initially, the machine will be in the start state ¢, withread - write head pointing to the first symbol
of wftom left. After some sequence of moves, if the Turing machine enters into the final state and
halts, then we say that the string w is accepted by Turing machine.

FORMAL LANGUAGES AND AUTOMATA THEORY

7.2.5 Differences between TN and PDA
Push Down Automa :

1.

2.
3

A PDA is a nondeterministic finite automaton coupled with a stack that can be used to store
astring of arbitrary length.

‘The stack can be read and modified only at its top.

A PDA chooses its next move based on its current state, the next input symbol and the
symbol at the top of the stack.

. There are two ways in which the PDA may be allowed to signal acceptance. One is by

6.

7

entering an accepting state, the other by emptying its stack.

. ID consisting of the state, remaining input and stack contents to describe the "current condition”

ofaPDA.

The languages accepted by PDA's either by final state or by empty stack, are exactly the
context - free languages.
A PDA languages lie strictly between regular languages and CSL's.

Turing Machines :

1.

The TM is an abstract computing machine with the power of both real computers and of
other mathematical definitions of what can be computed.

. TM consists of a finite - state control and an infinite tape divided into cells.

TM makes moves based on its current state and the tape symbol at the cell scanned by the
tape head.

The blank is one of tape symbols but not input symbol.

TM accepts its input if it ever enters an accepting state.

The languages accepted by TM's are called Recursively Enumerable (RE) languages.

. Instantaneous description of TM describes current configuration ofa TM by finite- length sting,

Storage in the finite control helps to designa TM for a particular language.

. ATM can simulate the storage and control of 2 real computer by using one tape to store all

the locations and their contents.

7.3 CONSTRUCTION OF TURING MACHINE (TM)

In this section, we shall see how TMs can be constructed.

Example 1: Obtain a Turing machine to accept the language L = {0 "1" [n 21} .

Solution : Note that n number of (s should be followed by n number of I's. For this let us
take an example of the string 1 = 00001111. The siring w should be accepted as it has four zeroes
followed by equal number of 1's.

FORMAL LANGUAGES AND AUTOMATA THEORY

General Procedure :
Let g, bethe start state and let theread - write head points to the first symbol of the string to be
scanned. The general procedure to design TM for this case is shown below
1. Replace the left most 0 by X and change the state to g, and thenmove the read - write head
towardsright. This is because, aftera zero is replaced, we have to replace the corresponding
1 so that number of zeroes matches withnumber of 1's.
2. Search for the lefimost 1 and replace it by the symbol Y and move towards left (soasto
obtain the lefimost 0 again). Steps 1 and 2 can be repeated.
Consider the situation
XX00YY11
t
o
where first two 0's are replaced by Xs and first two 1's are replaced by Ys. In this situation, the
read - write head points to the left most zero and the machine is in state g, . With thisas the
configuration , now let us design the TM.
Step 1: Instate g, , replace 0 by X, change the state to ¢, and move the pointer towards
right. The transition for this can be of the form
5(q0, 0) = (*’h»v X, R
The resulting configurationis shown below .
XXX0YY11
.
4
Step 2 : Instate g, , we have to obtain the left - most 1 and replace itby Y. For this, letus move
the pointer to point to leftmost one. Whenthe pointer is moved towards 1, the symbols encountered
may be 0 and Y. Irrespective what symbol is encountered, replace 0 by 0, Y by Y, remain in state
g, and move the pointer towards right. The transitions for this can be of the form

5(‘11&9):(‘1!,03R)
8(g,.Y)=(q),Y sR)

When these transifions are repeatedly applied, the following configuration is obtained.

XXX0YY1l

T
2

FORMAL LANGUAGES AND AUTOMATA THEORY

Step 3 : Instate g,, if the input symbol to be scanned isa 1, then replace 1 by Y, change the
state 1o ¢, and move the pointer towards left. The transition for this can be of the form

S(gq.1)=(q,,Y,L)
and the following configuration is obtained.

XXX0YYY1

T
9z
Note that the pointer is moved towards left. This is because, a zero is replaced by X and the
corresponding 1 is replaced by Y. Now, we have to scan for the left most 0 again and so, the
pointer was move towards left. :
Step 4 : Note that to obtain leftmost zero, we need to obtain right most X first. So, we scan for -
the right most X. During this process we may encounter Y's and 0's. Replace Yby Y, 0 by 0,
remain in state g, only and move the pointer towards left. The transitions for this can be of the
form 6(q2:Y)=(42.7,L)
5(q2$0):(q2 ’O:L)
The following configuration is obtained
XXX0YYYI
T
U7

Step 5: Now, we have obtained the right most X. To get leftmost 0, replace X by X, change
the state to g, and move the pointer towards right. The transition for this can be of the form

§(q, X)=(qps X ,R)
and the following configuration is obtained

XXX0YYY!

2
4o
Now, repeating the steps 1 through 5, we get the configuration shown below
| XXXXYYYY

4

o
Step 6 : Instate g, , ifthe scanned symbol is Y, it means that there are no more 0's. If there are
10 zetoes we should see that there are no 1's. For this we change the state to g, replace Yby Y
and move the pointer towards right. The transition for this can be of the form

FORMAL LANGUAGES AND AUTOMATA THEORY

8(qq.Y)=(4;,Y,R)
and the following configuration is obtained
XXXXYYYY
I
3
Instate ¢,, we should see that there are only Ys and no more 1's. So, as we can replace Yby Y
andremainin g, only. The transition for this can be of the form
6(¢3.Y)=(g5,Y,R)
Repeatedly applying this transition, the following configuration is obtained .
XXXXYYYYB
2
93
Note that the string ends with infinite number of blanks and so, in state ¢, if we encounter the
symbol B, meansthat end of string is encountered and there exists n number of O's ending withn
number of 1's. So, in state ¢, , on input symbol B, change the state to ¢, , replace B by B and
move the pointer towards right and the string is accepted. The transition for this can be of the
form 8(q5.8)=(¢4.B.R)

The following configuration is obtained
XXXXYYYYBB

T
94

So, the Turing machine to accept the language 1 ={a” b"|n21}

isgivenby M =(Q,5.1,0.,94.B,F)
where
O=1{g- 9,99 }5 E={0,1}; T={01 XY B}
go € Q isthe startstate of machine; B eI isthe blank symbol.
F ={q,} isthefinal state.
& is shown below.
8(g4: O = (¢, X, B)
8(q;,0)=(4,,0,R)

FORMAL LANGUAGES AND AUTOMATA THEORY

85(g,Y)=(gq,,Y ., R)
F(q1) ={q2,Y,L)
8{q..Y)=(q,,Y,L)
8(44,0)=(q,,0,L)
8(g4,X)={(q,,X,R)
§(q0,.Y)=(q4,Y . R}
5(gs,¥)=(g:.Y . R}

6(93’3):(4'4»8:‘}2)
The transitions can also be represented using tabular form as shown below.

Tape Symbols ()
0 1 X Y

o (9, X, R) = (g3, ¥, B} =

@ @0R) | (@rD g, Y, R -
9 (g4,0,L) - {g:. Y, 1) -

93 T i (an Y, R) (g4, B 4]

% 4 . 2 §

The transition table shown above can be represented as transition diagram as shown below :

Y/YR YL
0/0.R

To accept the string :

The sequence of moves or computations (IDs) for the string 0011 made by the Turing machine
are shown below :

FORMAL LANGUAGES AND AUTOMATA THEORY

Initial ID

400011 - Xg,011 o= X 0g 11
Xg,0¥1 -~ g, X0¥1
Xgo0Y1 - XXqY1
XX¥q 1 b XYY
Xq, X7Y o XXg¥Y
XX¥gs¥ - XXYYqs
XXYYBq,
(Final ID})

Example 2 : Obtain a Turing machine to accept the language L (M) = { 0" 12" [n2 1}

Solution ; Note that n number of 0's are followed by n number of 1's which in tum are followed
by n number of 2's. In simple terms, the solution to this problem can be stated as follows :

Replace first n number of 0's by X's, next n number of 1's by Y's and next n number of 2's by
Z's. Consider the situation where in first two 0's are replaced by X's , next immediate two 1's are
replaced by Y's and next two 2's are replaced by Z's as shown in figure 1(@).

XX00YY11ZZ22 XXXOYY11ZZ22 XXX0YY112722

1 ¥)
qo q 4

® ®) ©

FIGURE 1 : Various Configurations
Now, with figure 1(a). a as the current configuration, let us design the Turing machine. In
state g, , if the next scanned symbol is 0 replace it by X, change the state to ¢, and move the
pointer towards right and the situation shown in figure 1(b) isobtained . The transition for this can
beof the form

5(g,,0)=(g1, &, R)

Instate ¢,, wehave to search for the leftmost 1. It is clear from figure 1(b) that, when we
are searching for the symbol 1, we may encounter the symbols 0 or Y. So, replace 0 by 0, Yby
Y and move the pointer towards right and remain in state g, only. The transitions for this can be
ofthe form §(g,,0)=(4,,0,R)

8(q:.¥)={q:,7.R)

FORMAL LANGUAGES AND AUTOMATA THEORY

The configuration shown in figure 1(c) is obtained. Instate g,,0n encountering 1 change the
state to g, replace 1 by Y and move the pointer towards right. The transition for this canbe of
the form

5(‘}'1 ,1)=(612>Y,R)
and the configuration shown in figure 2(2) is obtained

XXXOYYY1ZZ22 XXXOYYY1Z722
Ey 1
92 9

@) ©
FIGURE 2 : Various Configurations

Instate g,, we have to search for the leftmost 2. Itis clear from figure 2(a) that, when we
are searching for the symbol 2, we may encounter the symbols 1 or Z. So, replace 1 by 1, Zby
7 and move the pointer towards right and remain in state ¢, only and the configuration shownin .
figure 2(b) is obtained. The transitions for this can be of the form

8(g,,1)=(q,,1,R)
6(g92,2)=(q,,Z,R)

Instate ¢, , on encountering 2, change the state to ¢, , replace 2 by Z and move the pointer
towards left. The transition for this can be of the form

8(q,.2)=(g5,2,L)
and the configuration shown in figure 2(c) is obtained. Once the TM is instate g, , it means that
equal pumber of 0's, 1'sand 2's are replaced by equal number of X's, Y's and Z's respectively.
At this point, next we have to search for the rightmost X to get leftmost 0. During this process, it

is clear from figure 2(c) that the symbolssuch as Z's, 1,8, Y's, 0's and X are scanned respectively
one after the other. So, replace Z by Z,1by 1, Yby Y, O by 0, move the pointer towards left and

stay in state g, only. The transitions for this can be ofthe form
6(g5,2)=(45,Z,L)
8{(g5.1)=(q5.,L)
8{(gs.¥)=(g;,¥ L)
8(¢5.0)=(g5,0,L)
Only on encountering X, replace X by X, change the state to g, and move the pointer
towards right to get leftmost 0. The transition for this can be of the form
5(93»X)=(‘10sX‘R)

FORMAL LANGUAGES AND AUTOMATA THEORY

All the steps shown above are repeated till the following configuration is obtained.
XXXXYYYYZZZZ

1
o
In state g, , if the input symbol is Y, it means that there are no 0's . If there are no 0's we
should see that there are no 1's also. For this to happen change the state to g, replace YbyY
and move the pointer towards right. The transition for this can be of the form
8(g0.¥)=(44.Y :R)
In state g, search for only Y's, replace Y by Y, remain in state g, only and move the pointer
towards right. The transition for this can be of the form
5(q .Y)=(q4,¥,R)
Instate ¢, ,if we encounter Z, it means that thereareno 1's and so we should see that there

~ areno 2's and only Z's should be present. So, on scanning the first Z, change the state to ¢, ,
replace Z by Z and move the pointer towards right. The transition for this can be of the form
8(q4:2)=(q5.2,R)
But, instate ¢, only Z's should be there and no more 2's. So, as long as the scanned symbol
is Z, remain in state g, , replace Z by Z and move the pointer towards right. But, once blank

symbol B is encountered change the state fo ¢,, replace B by B and move the pointer towards
right and say that the input string is accepted by the machine, The transitions for this can be of the
form 5(g5.Z)=(g5,Z,R)
5(q5.8)=(q¢.B,R)

whete g, is the final state.
So, the TM to recognize the language Z = { 0"1"2"}n 21} isgivenby
M = (Q’E> Faé sq()sBsF)
where
0 =1¢0:91:92:93:94>95+6} > z={0,12}
r={0,1,2X %, Z B}; gq,istheinitial state
B isblank character ; F={ ¢, }isthe final state
& is shown below using the transition table.

FORMAL LANGUAGES AND AUTOMATA THEORY

T

Y

4, g,s LR
g; g, YR
q, g, LR
4 g,,2.L |q,, YL
4 9..LR g, YR
4 VRVA S

9
The transition diagram for this can be of the form

YIY, R ZZR
R R

Example 3 : Obtaina TMtoacceptthelanguage L = {w|w e (0+1)*} containing the substring 001.

Solution : The DFA which accepts the language consisting of strings of O's and 1's havingasub
string 001 is shown below :

The transition table for the DFA is shown below :

FORMAL LANGUAGES AND AUTOMATA THEORY

0 1

13 9 ()

9, A ‘D

4 4 4

QQ qJ q3

We have seen thatany fanguage which is accepted by a DFA is regular. As the DFA processes
the input string from left to right in only one direction, TM also processes the input stringinonly
one direction (unlike the previous examples, where the read - write header was moving in both
the directions), For each scanned input symbol either O or 1), in whichever state the DFA was
in, TM also enters into the same states on same input symbols, replacing 0 by O and 1 by 1 and
the read - write head moves towards right. So, the transition table for DFA and TM remains
same (the format may be different. It is evident in both the transition tables). So, the transition
table for TM to recognize the language consisting of 0's and 1's with a substring 001 is shown
below:

0 1 B
g, q,,;0.R 7,, LR -
4, qz,O,‘R 4.» 1, R -
4, 4,0, R g,s LR -
q, q,,0,R q,. LR

9
The TMis given by

M x(Qsz;ra&’qa;BaF)
where

0=1{4, 4,:9:»95> 43> L={0,5
T={0,1}; §- isdefined already

q, isthe initial state; B blank character
F={ g, }isthe final state

The transition diagram for this is shown below.

FORMAL LANGUAGES AND AUTOMATA THEORY

1R
V1R O/OR goR

- A
: 010, 0/0. m.R B’B‘R
/LR

Example 4 : Obtaina Turing machine to accept the language containing strings of 0's
and 's ending with 011,

Solution : The DFA which accepts the language cousisting of strings of0's and 1's ending
with the string 001 is shown below :

The transition table for the DFA is shownbelow :

5 0
o 4 4,

q| ql q2

9> 9 9gs
9. 4 4,

We have seen that any language which is accepted by a DFA is regular. As the DFA processes
the input string from left to right in only one direction, TM also processes the input string in only
one direction. For each scanned input symbol (either 0 or 1), in whichever state the DFA was
in, TM also enters into the same states on same input symbols, replacing 0 by O and 1 by 1 and
the read - write head moves towards right. So, the transition table for DFA and TM remains
same (the format may be different. It is evident in both the transition tables). So, the transition
table for TM to recognize the language consisting of ('s and 1's ending with a substring 001 is
shown below :

FORMAL LANGUAGES AND AUTOMATA THEORY

S 0

% q,:0.R
9, q,,0,R
4; g,,0.R
q, q,,0,R

94 2

The TMisgivenby M =(0Q.2.1.5.94,8,F)
where

0=1{4 4%:+8, } > Z=10,1} ; T={0,1}
§ — isdefined already
g, istheinitial state ; B doesnotappear
F={ g, }isthefinal state

The transition diagram for this is shown below:

/1, OOR

Example 5: Obtain a Turing machine to accept the language
L={wwis evenand £= {a,b}}
Solution :

The DFA to accept the language consisting of even number of characters is shown below.

ab

@@

a,b

FORMAL LANGUAGES AND AUTOMATA THEORY

The transition table for the DFA is shown below :

a b
9 4 4

q, 9, 9o

We have seen that any language which is accepted by aDFAis regular. As the DFA processes
the input string from left to right in only one direction, TM also processes the input string in only
one direction. For each scanned input symbol (cither a or b), in whichever state the DFA was in,
"TM also enters into the same states on same input symbols, replacing a by aand b by band the
read - write head moves towards right. So, the transition table for DFAand TM remains same
(the format may be different). So, the transition table for TM to recognize the language consisting
of a's and b's having even number of symbols is shown below :

8 a b B

4, g, R g5, R g,-B,R

4, g, &R g, R -

L9 % i
The TM s given by

M =(Q,2,1,8,94,B.F)
where
QE{ Gos 4 }; Z={a b} ; I'={g, b}
5 - isdefined already ; ¢, istheinitial state
B does notappear ; F= { g, } isthe final state

The transition diagram of TM is given by

FORMAL LANGUAGES AND AUTOMATA THEORY

Example 6 : Obtaina Turing machine fo accepta palindrome consisting of &'s and b's of any length.
Solution : Letus assume that the first symbol on the tape is blank character B and is followed
by the string which in turn ends with blank character B. Now, we have to design a Turing machine
which accepts the string, provided the string is a palindrome, For the string to be a palindrome,
the first and the last character should be same, The second character and last but one character
in the string should be same and so on. The procedure to accept only string of palindromes is
shown below. Let g0 be the start state of Turing machine.

Step 1 : Move theread - write head to point to the first character of the string. The transition
for this can be of the form 5(94.8)=(g,.B,R)
Step 2: Instate g, , if the first character isthe symbol a, replace it by B and change the state
1o ¢, and move the pointer towards right, The transition for this can be of the form
6(q1,0)=(q,,8,R)
Now , we move the read - write head to point to the last symbol of the string and the last

symbol should be a . The symbols scanned during this process are a's , b's and B. Replace aby
a, bby b and move the pointer towards right. The transitions defined for this can be of the form

6(q,a)=(q,,a,R)
6(g,.6)=(q,.0.R)

But, once the symbol B is encountered, change the state to ¢, , replace B by B and move the
pointer towards left. The transition defined for this can be of the form

6(q,2,B)=(93,B,L)

Instate ¢, , the read - write head points to the last character of the string. Ifthe last character
isa, then change the state to ¢, , replace a by B and move the pointer towards left. The transitions
defined for this can be of the form

6(g3,a)=(q4,8,L)

At this point, we know that the first character is a and last character is also a. Now, reset the
read - write head to point to the first non blank character as shown in step5.

Instate g, ,if the last character is B (blank character), it means that the given string is an odd
palindrome. So, replace B by B change the state to ¢, and move the pointer towards right. The

transition for this can be of the form
’ 6(q1,8)=(q;,B.R)
Step 3 : Ifthe first character is the symbol b, replace it by B and change the state from ¢, to ¢,
and move the pointer towards right. The transition for this can be of the form
5(g1,0)=(q5,B,R)

FORMAL LANGUAGES AND AUTOMATA THEORY

Now, we move the read - write head to point to the last symbol of the string and the last
symbol should be b. The symbols scanned during this process are a's,b'sand B. Replaceaby a,
b by band move the pointer towards right. The transitions defined for this can of the form

g(qua)z(QDasR)
5(gs,b)=(g5,0,R)

But, once the symbol B is encountered, change the state to ¢, , replace Bby B and move
the pointer towards left. The transition defined for this can be of the form

8(qs5,B)=(q¢,B.L)

In state g, , the read - write head points to the last character of the string,. If'the last character
isb, then change the state to g,., replace b by B and move the pointer towards left. The transitions
defined for this can be of the form

s (qﬁ’b)m(q‘thL)

At this point, we know that the first characier isb and last character is also b. Now, reset the

read - write head to point to the first non blank character as shown in step 5.

Instate g, , Ifthe Jast character is B (blank character), it means that the given string is an
odd palindrome. So, replace B by B, change the state to ¢, and move the pointer towards right.
The transition for this can be of the form

» 5(q¢-B)=(q,B,R)
Step4: In state g,, ifthe first symbol is blank character (B), the given string is even palindrome
and so change the state to ¢, , replace Bby B and move the read - write head towards right. The
transition for this can be of the form
8(q:,,B)=(q,.8,R)

Step 5: Resettheread - write head to point to the first non blank character. This canbe done
_ asshown below.

If the first symbol of the string is a, step 2 is performed and if the first symbol of the string is
b, step 3 is performed. After completion of step 2 or step 3, itis clear that the first symbol and the

Jast symbol mateh and the machine is currently in state g, . Now, wehave toreset the read - write
head to point to the first nonblank character in the string by repeatedly moving the head towards
left and remain in state ¢, . During this process, the symbols encountered maybeaorborB
(blank character). Replace a by a, b by b and move the pointer towards left. The transitions
defined for this can be of the form 5(q4,a)=(g4,a,L)

5(‘14yb)=(q4sva)

FORMAL LANGUAGES AND AUTOMATA THEORY

But, if the symbol B is encountered , change the state to ¢, , replace B by B and move the pointer
towards right. the transition defined for this can be of the form

6(q4,8)=(q1.B,R)
After resetting the read - write head to the first non - blank character, repeat through step 1.
So, the TM toaccept strings of palindromesover { a,b }isgivenby i =(Q, £, &, G4,B.F)

where Q= {q,,9,,4,:9,: 9,295,954, } 5 T={a, b} ; T={ab B}; g, istheinitial state
Bisthe blank character; F={ ¢, }; § is shown below using the transition table

T

é b B

% ¥ 758, R
4 9,.B,R q,-B,R
9, g,-b,R q,,B,L
4, - 7,-B., R
q. v B g,,B,R
q, g,,bR g, B, L
qs ¥ q.,>B,L 4,,B,R

9, = = -
The transition diagram to accept palindromes over { a, b }is given by

The reader can trace the moves made by the machine for the strings abba, aba and aaba and is
left as an exercise.

FORMAL LANGUAGES AND AUTOMATA THEORY

Example 7 : Construct a Turing machine which accepts the language of aba over Z={a,b}.

Solution : ThisTMisonly for L= { aba}
We will assume that on the input tape the string 'aba’ is placed like this

NINEE
2

‘The tape head will read out the sequence upto the B character if aba' is readout the TM will
halt after reading B.

{naR) - {(b.b.R} (24 R)

(B,B,5)

The triplet along the edge written is (input read, output to be printed, direction)
Let us take the transition between start stateand g, is(a, a, R) that is the current symbol

read from the tape is a then as a output a only has to be printed on the tape and then move the
tape head to the right. The tape will look like this

Again the transition between ¢, and ¢, is (b, b, R). That means read b, print b and move
right. Note that as tape head is moving ahead the states are getting changed.

[« o]a]® |B

The TM will accept the language when it reaches to halt state. Halt state is always aaccept
state for any TM. Hence the transition between ¢, and haltis (B, B, S). This meansread B, print
B and stay there or there is no move left or right. Eventhough we write (B, B, L) or (B, B, R)
it is equally correct. Because after all the complete input is already recognized and now we
simply want to enter into a accept state or final state. Note that for invalid inputs such as abb or
ab ot bab there is either no path reaching to final state and for such inputs the TM gets
stucked in between. This indicates that these all invalid inputs can not be recognized by our TM.

The same TM can be represented by another method of transition table

FORMAL LANGUAGES AND AUTOMATA THEORY

a b
Staﬂ (q, ¥l R} -

4, % (4,,6,R)

4 (Q:;5a, R) e =

g, - (HALT, B, S)
HALT - .

Inthe given transition table, we write the triplet in eachrowas :
(Next state, output to be printed, direction)
Thus TM can be represented by any of these methods.

Example 8 ; Design a TM that recognizes the set L= {0 1"|n > 0}.

Solution : Here the TM checks for each one whether two 0's are present in the left side. If it
match then only it halts and accept the string.

The transition graph of the TM is,

FIGURE : Turing Machine for the given language L= {0*1'{n2 0}

FORMAL LANGUAGES AND AUTOMATA THEORY

Example 11 : What does the Turing Machine described by the 5 - tuplesb,
(‘Io 30’ s al? R);(‘Io '.js Q; :0,7'),(% ’ B’ QZ !B‘! R) ¥

(4,.0,4,,0, R), (q,,1,4,,), R) and (g4,,B.4,,B,R) Dowhen given a bit string
as input ?

Solution : The transition diagram of the TM is,

O/LR

FIGURE : Transition Diagram for the given TM
The TM here reads an input and starts inverting 0's to 1's and 1'sto O's till the first L.
After ithas inverted the first 1, it read the input symbol and keeps it as it is till the next 1.
After encountering the 1 it starts repeating the cycle by inverting the symbol till next 1. It halts
when it encounters a blank symbol.

7.4 COMPUTABLE FUNCTIONS

A Turing machine is a language acceptor which checks whether a string x isaccepted by a
Janguage L. In addition to that it may be viewed as computer which performs computations of
functions from integers to integers. In traditional approach an integer is represented in unary, an
integer ;> ¢ isrepresented by the string ¢ .

Example 1 : 2 is represented as o2 . If a function has k arguments, i, iy,.......J; , then these

integers are initially placed on the tape separated by 1's,a5 010 2 1 10% .

If the TM halts (whether in or not in an accepting state) with a tape consisting of 's for some m,
thenwe say that £(i,, iy,......i) = m, where fis the function of k arguments computed by this
Turing machine.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 100

8ga) = (445 B, 1)

8(g4,0) = (g4, 0, L)

8(44,0) = (g5, 0, R)
Ifin state ¢, aB is encountered before a 0, we have situation (i) described above. Enter state
g,and move left, changing all 1's to B 's until encountering a'B'. This Bis changed backtoal,
state g, is entered, and M halts.
6. 3(qq,1) = (g5, B, R)

3(g5,0) = (gs, B, R)

(g5, 1) = (g5, B, R)
. 8(g5,B) = (g4, B, R)
Ifin state g, 21 is encountered instead of a 0, the first block of 0's has been exhausted, asin
situation (i) above. M enters state g, to erase the restof the tape, then enters g, and halts.

Example 4 : Designa TM which computes the addition of two bosit‘we integers.

Solution: LetTM M =(Q, {0, 1, #},8,5) computes the addition of two positive integers m
and n. It means, the computed function £(m, n') defined as follows:

man(lf mnz1)
0 (m=n=0)

J(m.n) x{

1 onthe tape separates both the numbers m and n. Following values are possible for m andn,
1. m=n=0 (#1#....istheinput),
2. m=0and n#0 { #10"# ----... isthe input),
3. mzx0andn=0 (#01% ... is the input), and
4. m=0and n20 (#0m10"# ... is the input)
Several techniques are possible for designing of M, some are as follows :
{a) M appends (writes) m after n and erases the m from the left end.

(b) M writes 0 in place of 1 and erases one zero from the right or leftend . This is possiblein
case of n 0 OF m=0 only. fm=0orn=0then 1 is replaced by #.

We use techniques (b) given above. M is shown in below figure.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 101

Lis replaced by ¢
inadvance

fa=0

Bince, 1 is replaced by 0 in
advance, so erase one D ifn =0

FIGURE : TM for addition of two positive integers

7.5 RECURSIVELY ENUMERABLE LANGUAGES

AlanguageLoverthealphabet 3, iscalledrecursively emumerableifthereisa TM Mihatacceptevery wond
inL and either rejects(crashes) or loops for every word inlanguage L the complement of L.
Accept(M)=L
Reject (M) + Loop M) =L’
When TM M is still ranning on some input of recursively enumerable langnages) we can never
tell whether M will eventually accept if we let it run for long time or M will run forever (in loop).

Example : Consider alanguage(a+b)*bb(a+b)*.

T™ for th]S Ianguage is 4 (b,b,R) (8,8 R)

T (b, b, R) (';\ 3 '@

(a,2,R)

FIGURE : Turing Machine for(a+b)*bb(a+b)*

Here the inputs are of three types.

1. All words with bb = accepts (M) as soon as TM sees two consecutive b's it halts.

2. Allstrings without bb butendinginb = rejects (M). When TM sees a single b, it enters
state2. If the string is ending with b, TM will halt at state 2 which is not accepting state.
Hence it is rejected.

. All strings without bb ending in ‘a’ or blank 'B'=loop (M) here when the TM seeslastait
enters state 1. In this state on blank symbol it loops forever.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 102

Recursive Language

Alanguage L over the alphabet 5 is called recursive if there is a TM M that accepts every word
inL and rejects every wordinL' 1. e.,

accept (M)=L
reject (M) =L’

loop (M) = 4.

Example :Consideralanguageb(a+b)¥ . Itisrepresented by TM as

(sut)—222)

FIGURE : Turing Machine forb(a+b)*

This TM accepts all words beginning with 'b' because it enters halt state and it rejects all words
beginning with a because it remains in start state which is not accepting state.

A language accepted by a TM is said to be recursively enumerable languages. The subclass of

recursively enumberable sets (1. €) are those languages of this class are said to be recursive sets
orrecursive language.

7.6 CHURCH'S HYPOTHESIS

According tochurch's hypothesis, all the fumctions which can be defined by buman beings can be
computed by Turing machine. The Turing machine is believed to be ultimate computing machine.
The church's original statement was slightly different because he gave his thesis before machines
were actually developed. He said that any machine that can do certain list of operations will be
able to perform ail algorithms. TM can perform what church asked, so they are possibly the

- machines which church deseribed,

Churtch tied both recursive functions and computable finctions together, Every partial recursive
function is computable on TM. Computer models such as RAM also give rise to partial recursive
functions. So they can be simulated on TM which confirms the validity of churches hypothesis.

Important of church's hypothesis is as follows .

FORMAL LANGUAGES AND AUTOMATA THEORY Page 103

. First we will prove certain problems which cannot be solved using TM.

. Ifchurches thesis is true this implies that problems cannot be solved by any computer orany
programming languages we might every develop.

. Thus in studying the capabilities and iimitations of Tun'ng machines we are indeed studying
the fundamental capabilities and limitations of any computational device we might even
construct.

It provides a general principle for algorithmic computation and, while not provable, gives strong
evidence that no more powerful models can be found.

7.7 COUNTER MACHINE

Counter machine has the same structure as the multistack machine, but in place of each stack is

a counter. Counters hold any non negative integer, but we can only distinguish between zero and
Nnon Zero counters.

" Counter machines are off - line Turing machines whose storage tapes are serni - infinite, and .
whose tape alphabets contain only two symbols, Z and B (blank). Furthermore the symbol Z,
which serves as a bottom of stack marker, appears initially on the cell scanned by the tape head
and may never appear on any other cell. An integer i can be stored by moving the tape head i
cells to the right of Z. A stored number can be incremented or decremented by moving the tape
head rightor left. We can test whether a number is zero by checking whether Z is scanned by the
head, but we cannot directly test whether two numbers are equal.

(o] Restonty e | 5]

Finite
Control

tzlslal 1\ iB\lfif,l...

BDO0E00DE

FIGURE : Counter Machine

FORMAL LANGUAGES AND AUTOMATA THEORY Page 104

¢ and § are customarily used for end markers on the input. Here Z is the non blank symbol on

each tape. An instantaneous description of a counter machine can be described by the state, the
input tape contents, the position of the input head, and the distance of the storage heads from the
symbol Z (shown here as d, and ,). We call these distances the counts on the tapes. The
counter machine can only store a count an each tape and tell if that count is zero.

Power of Counter Machines

- Bvery language accepted by a counter Machine is recursively enumerable.
- Every language accepted by a one - counter machine is a CFL so a one - counter machine
is a special case of one - stack machine i. ¢., aPDA

7.8 TYPES OF TURING MACHINES

Various types of Turing Machines are :

i Withmultiple tapes.

il 'With one tape but multiple heads.

iil. Withtwo dimensional tapes.

iv. Nondeterministic Turing machines. '
It is observed that computationally all these Turing Machines are equally powerful. That means
one type can compute the same that other can. However, the efficiency of computation may
vary.
1. Turing machine with Two - Way Infinite Tape :
Thisis a TM that have one finite control and one tape which extends mﬁmtely in both directions,

Accept/Reject
e

II‘IIHIIHHI

tape

FIGURE : TM with infinite Tape

Tt turns out that this type of Turing machines are as poWerﬁﬂ as one tape Turing machines whose
tape has aleftend.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 105

. Multiple Turing Machines :

Einite Accept/Reject
control

]
faoﬂ:Im.—_IE
we2 T 1 1111

wes [1 1] 11
FIGURE : Multiple Turing Machines

Amultiple Turing machine consists of a finite control with k tape heads and k tapes, each tape is
infinite in both directions. On a single move depending on the state of the finite control and the
symbol scanned by each of the tape heads, the machine can

1. Changestate.

2. Printa new symbo! on each of the cells scanned by its tape heads.

3. Moveeach ofits tape heads, independently, one cell to the left or right orkeep it stationary.

Initially, the input appears on the first tape and the other tapes are blank.
3. Nondeterministic Turing Machines :

A nondeterministic Turing machine is a device with a finite control and a single, one way infinite
tape. For a given state and tape symbol scanned by the tape head, the machine has a finite
number of choices for the next move, Each choice consists of a new state, a tape symbol to print,
and a direction of head motion. Note that the non deterministic TM is not permitted to make a
move in which the next state is selected from one choice, and the symbol printed and/ or direction
of head motion are selected from other choices, The non deterministic TM accepts its input if any
sequence of choices of moves leads to an accepting state.

As with the finite automaton, the addition of nondeterminism to the Turing machine does not
allow the device to accept new languages.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 106

4. Multidimensional Turing Machines :

FIGURE : Multidimensional Turing Machine

The multidimensional Turing machine has the usual finite control, but the tape consists of a
k - dimensional array of cells infinite in all 2k directions, for some fixed k. Depending on the state and
symbol scanned, the device changes state, prints a new symbol, and moves its tape head in one'of 2k
directions, either positively or negatively, along one of the k axes. Initially, the input is along one axis, and
the head is at the left end of the input.At any time, only a finite number of rows in any dimension
contains nonblank symbols, and these rows each have only a finite number of nonblank symbols
5. Multihead Turing Machines : ;

wout | pe | AcceetReiCH
controt

head 1 head 1
head 2

LTI IITIT]
tape

FIGURE : Muitihead Turing Machine

Ak - head Turing machine has some fixed number, k, of heads. The heads are numbered 1 through
k, and a move of the TM depends on the staie and on the symbol scanned by each head. In one
move, the heads may each move independently left, right or remain stationary.

6. Off - Line Turing Machines : ; ’

Finite
Control

CrITVid
J

Pl
o,
FIGURE : Off - lihe Turing Machine

FORMAL LANGUAGES AND AUTOMATA THEORY Page 10
age 107

COMPUTABILITY THEORY

After going through this chapter, you should be able to understand :

. Chomsky hierarchy of Languages
Linear Bounded Automata and CSLs
LR (0) Grammar
Decidability of problems
UTMand PCP
P and NP problems

8.1 CHOMSKY HIERARCHY OF LANGUAGES

Chomsky has classified all grammars in four categories (type 0 to type 3) based on the right
hand side forms of the productions.

{a) Type O

These types of grammars are also known as phrase structured grammars, and RHS ofthese are
fiee from any restriction. All grammars are type 0 grammars.

Example : productions of types AS—» aS, 'SB —» b, —»¢ are type 0 production.
(b) Type 1

We apply some restrictions on type O grammars and these restricted grammars are known as
type 1 or context - sensitive grammars (CSGs). Suppose atype 0 production yas — yB5

and the production & — # is restricted such that | e{<| fland S#<. Then these type of
productions is known as type 1 production. Ifall productions of a grammar are oftype 1 production,
then grammar is known as type 1 grammar, The language generated by a context - sensitive
grammar is called context - sensitive language (CSL).

FORMAL LANGUAGES AND AUTOMATA THEORY Page 108

In CSG, there is left context or right context or both. For example, consider the production
adB-> caf . Inthis, o isleftcontextand g isright contextofAand A is the varigble which is
replaced. ‘

The production oftype § — < is allowed intype 1 if g isin1(G), but 8 should not appear on
right hand side of any production.

Example : productions § — 4B,8 — €,4 - ¢ aretype 1 productions, but the production
oftype A — Sc isnotallowed . Almost every language can be thought as CSL.

Note : Ifleft or right context is missing then we assume that € is the context.

{c) Type 2

We apply some more restrictions on RHS of type 1 productions and these productions are
known as type 2 or context - free productions. A production of the form a— 8, where

a,Be(V UE)* is known as type 2 production. A grammar whose productions are type 2
production is known as type 2 or context - free grammar (CFG) and the languages generated by
this type of grammars is called context - free languages (CFL).

Example : §—S§+8,5->S*S, §-»id are type 2 productions.

(d) Type 3

This is the most restricted type. Productions of types 4 —» g or 4 —> aB|Ba ,where 4, BeV

and a € £ are known as type 3 or regular grammar productions. A production oftype s > e is
alsoallowed, if eisin generated language.

Example : productions §—>aS, S— ¢ are type 3 productions.
Left - linear production : A productionoftype 4 -» Ba iscalled left - linear production.
Right-linear production : Aproductionoftype 4— aB is called right - linear production.

Aleft - linear or right - linear grammar is called regular grammar. The language generated bya
regular grammar is known as regular language.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 109

8.2 LINEAR BOUNDED AUTOMATA

The Linear Bounded Automata (LBA) is a model which was originally developed asa model for
actual computers rather than mode for computational process. A linear bounded automaton isa
- restricted form of a non deterministic Tuting machine.

Alinear bounded automaton is a multitrack Turing machine which has only one tape and thistape
is exactly of same length as that of input.

The linear bounded automaton (LBA) accepts the string in the similar manner as that of Turing
machitie does. For LBA halting means accepting. In LBA computation is restricted fo an area
bounded by length of the input. This is very much similarto programming environment where size
of variable is bounded by its data type.

< a a

7

Lefiend
marker

Finite
control

FIGURE : Linear bounded automaton

The LBA is powerful than NPDA but less powerful than Turing machine. The input is placed on
the input tape with beginning and end markers. In the above figure the input is bounded
by <and>. ;

A linear bounded automata can be formally defmed as:

LBA is 7 - tuple on deterministic Turing machine with
M=(Q,%, T, 8, qo» daccen> Groject) having
. Two extra symbols of left end marker and right end marker which are not elementsof 1.
. The input lies between these end markers.
. The TM cannot replace < or > with anything else nor move the tape head left of <or
rightof >.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 110

8.3 CONTEXT SENSITIVE LANGUAGES (CSLs)

The context sensifive languages are the languages which are accepted by linear bounded antomata.
These type of languages are defined by context sensitive grammar. In this grammar more than
one terminal or non terminal symbol may appear on the left hand side of the production rule.
Along with it, the context sensitive grammar follows following rules:

i. Thenumber of symbols on the left hand side must not exceed number of symbols on the
right hand side.

ii. Theruleoftheform 4 —e isnotallowed unless A is a start symbol. It does not occur
on the right hand side of any rule.

The classic example of context sensitive languageis Z = {a" 5" ¢" | n > 1} . Thecontextsensitive
grammar can be written as :

aBC
SABC
AC
AB
BC

aa

ab

bb

be

ce

bC
cC

N R AR R

Now to derive the string aabbce we will start from start symbol :
S mleS - SABC
SABC nleS —» aBC
aBCABC rule CA —» AC
aBACBC) ruleCB — BC
aBABCC rileBA > AB
aABBCC ruleaA — aa
agBBCC ruleaB -» ab
aabBCC rulebB — bb
aabbCC rulebC —» be
aabbeC ralecC — ce
aabbee

FORMAL LANGUAGES AND AUTOMATA THEORY

Page 111

Note : The language " 5" ¢" where > | isrepresented by context sensitive grammar but it
cannot be represented by context free grammar,

Every context sensitive language can be represented by LBA.

8.4 LR (k) GRAMMARS

Before going to the topic of LR (k) grammar, let us discuss about some concepts which will be
helpful understanding it.

In the unit of context free grammars you have seen that to check whether a particular string is
accepted by a particular grammar or not we try to derive that sentence using rightmost derivation
or lefimost derivation. If that string is derived we say that it is a valid string.

Example :

Bes BT
T>T*F| F
F>id| (E)

Suppose we want to check validity of a string id +id * id . Its rightmost derivation is
E = E+T
E+T*F
E+T*id
E+ F*id
E +id*id
T+id *id
F+id*id
id + id *id

LU Uil

FIGURE(a) : Rightmost Derivation of id + id * id

Since this sentence is derivabie using the given grammar. Itis a valid string. Here we have checked
the validity of string using process known as derivation.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 112

Inreduction process we have seen that we repeat the process of substitution until we get starting
state. But some times several choices may be available for replacement. In this case we have to
backtrack and try some other substring . For certain grammars it is possible to carry out the
process in deterministic. (i. e., having only one choice at each time). LR grammars form one
such subclass of context free grammars. Depending on the number of ook ahead symbolized to
determine whether a substring must be replaced by a non terminal or not, they are classified as
LR(0), LR(1).... and in general LR(k) gramnmars.

LR(k) stands for left to right scanning of input string using rightmost derivation in reverse
order (we say reverse order because we use reduction which is reverse of derivation) using
look ahead of k symbols.

8.4.1 LR(0) Grammar

LR(0) stands for left to right scanning of input string using rightmost derivation in reverse order
using 0 look ahead symbols,

Before defining LR(0) grammars, let us know about few terms.

Prefix Property ; Alanguage L is said to have prefix property if whenever w in L, no proper
prefix of wis in L. By introducing marker symbol we can convert any DCFL to DCFL with prefix
property. Hence L$ = { w$ |w e L } isa DCFL with prefix property whenever wis inL.

Example : Consider a language L= { cat, cart, bat, art, car } . Here, we can see that sentence
cartis in L and its one of the prefixes car is also is in L. Hence, it is not satisfying property. But
L$ ={cat$,cart$, bat$ art§,car$ }

Here, cart $ is in L$ but its prefix cart or car are not present in L$. Similarly no proper prefix is
present inL$. Hence, it is satisfying prefix property.

Note : LR(0) grammar generates DCFL and every DCFL with prefix property has a LR(0)
grammar.

LR ltems

An item for aCFG is a production with dot any where in right side including beginning orend. In
case of ¢ production, suppose 4 — € 4—»>. isanitem.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 113

Computing Valid Item Sets

The mainideahere is to construct from a given grammar a deterministic finite automata to recognize
viable prefixes. We group items together into sets which give to states of DFA. The items may be
viewed as states of NFA and grouped items may be viewed as states of DFA obtained using
subset construction algorithm.

To compute valid set of items we use two operations goto and closure.
Closure Operation

It Iis a set of items for a granmmar G, then closure (1) is the set of items constructed from I by two
rules. :
1. Initially, every item1is added to closure (1)
2. ¥ 4> Bf isinclosure (Y and g § is productionthenadd item g § toLifitis
not already there. We apply this rule until no more new items can be added to closure (I).

Example @ For the grammar,

§ - 8
S ->» cdd
4 — a

If$ — § issetofoneitem in state [then closure of Tis,
L 8§ > s
S — 4D

The first item is added usingrule 1and § ~» .cAd is added using rule 2. Because '. 'is

followed by nonterminal S we add items having SinLHS.In § — .cdd '.'isfollowed by
terminal so no new item is added.

Goto Function : Itis written as goto (I, X) where Lis set of iterns and X is grammar symbol.

If 4> . X3 is msome item set L then goto (1, X)) will be closure of set of all item 4 — a.X.4.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 114

FIGURE(a) : DFA whose States are the Sets of Valid ltems

Definition of LR(0) Grammar : We say G is an LR (0) grammar if,

1. ltsstart symbol does not appear on the right hand side of any production and

2. Forevery viable prefix y of G whenever 4 — « is a complete item valid for y , thenno
other complete item nor any item with terminal to the right of the dot is valid for 7 .

Condition 1 : For a grammar to be LR(0) it should satisfy both the conditions. The first

condition can be made to satisfy by all grammars by introduction of anew production §'-> § is

known augmented gramimat.

Condition 2 : For the DFA shown in Figure(a), the second condition is also satisfied because

inthe item sets I, 1, and J; each containinga complete itemn, there are no other complete items

nor any other conflict.

Example : Consider the DFA given in figure(b).

FIGURE(b) : DFAfor the given Grammar

FORMAL LANGUAGES AND AUTOMATA THEORY Page 115

Each problem P is a pair consisting of a set and a question, where the question can be applied to
each element in the set. The set is called the domain of the problem, and its elements are called
the instances of the problem.

Example :

Domain = { All regular languages over some alphabet 5 }
Instance : L={w:wisawordover y endingin abb},
Question : Is union of two regular languages regular ?

851 Decidable and Undecidable Problems

A problem is said to be decidable if
1. Ttslanguageis reciusive, or
2. Ithas solution

Other problems which do not satisfy the above are undecidable. We restrict the answer of
decidable problems to " YES" or "NO" . If there is some algorithm exists for the problem, then
outcome of the algorithm is either "YES" or "NO" but not both. Restricting the answers to only
"YES" or "NO™ we may not be able to cover the whole problems, still we can covera lotof
problems. One question here. Why weare restricting our answers to only "YES" or "NO"? The
answer is very simple ; we want the answers as simple as possible.

Now, we say " If for a problem, there exists an algorithm which tells that the answer is either
"YES" or "NO" then problem is decidable."

; If for a problem both the answers are possible ; some times "YES" and sometimes "NO",
then problem is undecidable.

8.5.2 Decidable Problems for FA, Regular Grammars and Regular Languages

Some decidable problems are mentioned below :

1. Does FA acceptregular language ?

2, Isthe power of NFA and DFA same ?

3. I, and L, are two regular languages. Are these closed under following :
(@ Union
() Concatenation
(¢) Intersection
(d) Complement

FORMAL LANGUAGES AND AUTOMATA THEORY Page 116

6. ‘We have following co - theorem based on above discussion for recursive enumerable and
recursive languages.

LetLand T aretwo languages, where T the complement of L, then one of the following
istrue: s

(2) Both L.and 7 arerecursive languages,

(b) Neither Lnor T isrecursive languages,

(¢) If L is recursive enumerable but not recursive, then 7 isnotrecursive enumerable and
vice versa. :

Undecidable Problems about Turing Machines

In this section, we will first discuss about halting problem in general and then about ™.
Halting Problem (HP)
The halting problem is a decision problem which is informally stated as follows:

"Givena description of an algorithm and a description of ifs initial arguments, determine whether
the algorithm, when exccuted with these arguments, ever halts. The alternative is thata given
algorithm runs forever without halting.”

Alan Turing proved in 1936 that there is no general method or algorithm which can solve the
halting problem for all possible inputs. An algorithm may contain loops which may be infinite or
finite in length depending on the inputand behaviour of the algorithm. The amount of work done
in an algorithm usually depends on the input size. Algorithms may consist of various number of
loops, nested or in sequence. The HP asks the question :

Given aprogram and an input to the program, determine if the program will eventually stop when
itis given that input ?

One thing we can do here to find the solution of HP. Let the program run with the given input and
if the program stops and we conclude that problem is solved. But, ifthe program doesn't stop in
areasonable amount of time, we can not conclude that it won't stop. The questionis: " how long
we can wait 7" . The waiting time may be long enough to exhaust whole life. So, we can not
take it as easier as it seems to be. We want specific answer, either "YES" or " Q", and hence
some algorithm to decide the answer.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 117

Now, we analyse the following :
1. If H outputs "YES" and says that Q halts then Q itself would loop (that's how we
constructed it),
2. IfHoutputs "NO" and says that Q loops then Q outputs "YES” and will halts.
Since, in either case H gives the wrong answer for Q, Therefore, H cannot work inall cases
and hence can't answer right for all the inputs. This contradicts our assumption made earlier for
HP Hence, HP is undecidable.

Theorem ; HP of TM is undecidable. v
Proof : HP of TM means to decide whether or not a TM halts for some input w. We canprove
this following the similar steps discussed in above theorem.

8.6 UNIVERSAL TURING MACHINE '

The Church - Turing thesis conjectured that anything that can be done on any existing digital
computer can also be done by a TM. To prove this conjecture. A. M. Turing wasable to construct
asingle TM which s the theoretical analogue of a general purpose digital computer. This machine
is called a Universal Turing Machine (UTM). He showed thatthe UTM is capable of initiating
the operation of any other TM, that is, it is a reprogrammable TM. We can define thismachine in
more formal way as follows :

Definition : A Universal Turing Machine (denoted as UTM) is a TM that can take as inputan
atbitrary TM 7, with anarbitrary input for 7, and then perform the executionof 7, onitsinput.

What Turing thus showed that a single TM can acts like a general purpose computer that stores
aprogram and its data in memory and then executes the program. We can describe UTMasa3

-tape TM where the description of TM, T, and itsinput string x € 4 * are stored initially on the
firsttape, 1, . The second tape, ¢, used to hold the simulated tape of T, , using the same format
as used for describing the TM, 7, . The third tape,, £, holds the state of T,

!
1 Ta x l

Description of T with s inpurx

Contro} g §

Unit el i
nEUTM g
“Tape conteats of Ta

Seatenf Ta

FORMAL LANGUAGES AND AUTOMATA THEORY Page 118

Now, suppose that a Turing machine, T, , is consisting of a finite number of configurations,

denoted by, ¢, ¢, €505 €, and let &, G Cy,erns €, tepresent the encoding of them. Then, we

can define the encoding of 7, as follows : .
YO, RE BGH

Here, * and # are used only as separators, and cannot appear elsewhere. We use a pair of *'s fo

enclose the encoding of each configuration of TM, T,,.

The case where 8(s,q) is undefined can be encoded as follows :

#50G 0B #
where the symbols 5 , @ and F stand for the encoding of symbols, s, and B Blank character),
respectively. ;

Working of UTM

Given a description of a TM, 7, and its inputs representation on the UTM tape, #, and the

starting symbol on tape , ¢,, the UTM starts executing the quintuples of the encoded TM as

follows :

1. The UTM gets the current state from tape, ¢, and the current input syrabol from tape ¢, .

2. then, it matches the current state - symbol pair to the state symbol pairs in the program listed
ontape, f,.

. ifno match occurs, the UTM halts, otherwise it copies the next state into the current state
cell of tape, ,, and perform the corresponding write and move operations on tape, #, .
ifthe current state on tape, 7 is the halt state, then the UTM halts, otherwise the UTM goes
back to step 2. :

8.7 POST'S CORRESPONDENCE PROBLEM (PCP)

Post's correspondence problem is a combinatorial problem formulated by Emil Post in 1946.
This problem has many applications in the field theory of formal languages.

Definition :

A correspondence system P is a finite set of ordered pairs of nonempty strings over some alphabet.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 119

Hete, u; =b, u, =a, uy; =abe, vy=ca, v,=ab, vy=c.

We haveasolution w=u, u, = v, v, =abca.

8.8 TURING REDUCIBILITY

Reduction is a technique in which ifa problem A is reduced to problem B then any solution of B
solves A. In general, if we have an algorithm to convert some instance of problem A to some
instance of problem B that have the same answer then it is called Areduces to B.

FIGURE: Reduction

Definition : Let Aand B be the two setssuchthat 4, B ¢ N of natural numbers. ThenAis
Turing reducible to B and denotedas 4 <, B. ’

If there is an oracle machine that computes the characteristic function of A when it is executed
with oracle machine for B.

This is also called as Ais B ~ recursive and B - computable. The oracle machine is an abstract
machine used to study decision problen. It is also called as Turing machine with blackbox.

We say that Ais Turing equivalentto Band write 4 =, Bif 4<, Band B<; 4.

Properties :

1. Every setis Turing equivalent o its complement.

2. Every computable set is Turing equivalent to every other computable set.
3. 4a<, Band B<, Cthen 4%, B.

8.9 DEFINITION OF P AND NP PROBLEMS

A problem is said to be solvable if it has an algorithm to solve it. Problems can be categorized
into two groups depending on time taken for their execution.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 120

1. The problems whose solution times are bounded by polynomials of small degree.
Example: bubble sort algorithm obtains n numbers in sorted order in polynomial time

P(n) = n* —2n+1 wheren s the length of input. Hence, it comes under this group.

Second group is made up of problems whose bestknown algorithm are non polynomial
example, travelling salesman problem bas complexity of O(#* 2" which is exponential.
Hence, it comes under this group.

A problem can be solved if there is an algorithm to solve the given problem and time required is
expressed as a polynomial p(n) , n being length of input string. The problems of first group are of
thiskind. :

The problems of second group require large amount of time to execute and even require moderate

size so these problems are difficult to solve. Hence, problems of first kind are tractable or easy
and problems of second kind are intractable or hard.

8.9.1 P-Problem

P stands for deterministic polynomial time. A deterministic machine at each time executes an
instruction. Depending on instruction, it then goes tonext state which is unique.

Hence, time complexity of deterministic TM is the maximum number of moves made by Mis
processing any input string of length n, taken over allinputs of length n.

Definition : Alanguage.is said tobe in class P if there exists a (deterministic) TM M such
that M is of time complexity P(n) for some polynomial P and Maccepts L.
Class P consists of those problem that are solvable in polynomial time by DITM.

8.9.2 NP -Probiem

NP stands for nondeterministic poiyxiomial time.

The class NP consists of those problems that are verifiable in polynomial time. What we mean
here is that if we are given certificate of a solution then we can verify that the certificate is correct
in polynomial time in size of input problem.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 121

8.10 NP - COMPLETE AND NP - HARD PROBLEMS

A problem S is said to be NP- Complete problem if it satisfies the following two conditions.
1. SeNP,and

2. For every other problems §, e NP for some i=1,2, n, there is polynomial - time
transformation from S, fo § i.e. every probleminNP class polynomial -timereducibleto S.
We conclude one thing here that if , is NP - complete then Sis also NP - Complete.

As aconsequence, if we could find a polynomial time algorithm for S, then we can solve all NP
problems in polynomial time, because all problems in NP class are polynomial - time reducible to
each other.

"A problem P is said to be NP - Hard if it satisfies the second condition as NP - Complete, but
not necessarily the first condition .". '

The notion of NP - hardness plays an important role in the discussion about the relationship
between the complexity classes Pand NP, It is also often used to define the complexity class NP
- Complete which is the intersection of NP and NP - Hard. Consequently, the class NP - Hard
can be understood as the class of problems that are NP - complete or harder.

Example : AnNP-Hard problem isthe decision problem SUBSET - SUM whichis as follows.

" Given a set of integers, do any non empty subset of them add up to zero? Thisisa yes/no
question, and happens to be NP - complete .

There are also decision problems that are NP - Hard but not NP - Complete , for example, the
halting problem of Turing machine. It is easy to prove that the halting problem is NP - Hard but
not NP - Complete. It is also easy to see that halting problem is not in NP since all problems in
NP are decidable but the halting problem is not (voilating the condition first given for NP -
complete languages).

In Complexity theory, the NP - complete problems are the hardest problems in NP class, in the
sense that they are the ones most likely not to be in P class. The reason is that if we could find a
way to solve any NP - complete problem quickly, then you could use that algorithm to solve all
NP problems quickly.

Atpresenttime, all known algorithms for NP - complete problems require time which is exponential
in the input size. It is unknown whether there are any faster algorithms for these arenot.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 122

	DIGITAL NOTES
	ON
	FORMAL LANGUAGES AND AUTOMATA THEORY
	B.TECH II YEAR - II SEM
	(2017-18)

